Solving Problems in SSEH: The Use of Decision Support Tools

  • Myriam Merad
  • Benjamin D. Trump
Part of the Risk, Systems and Decisions book series (RSD)


In this chapter, we propose an introduction to the multicriteria approaches as well as an approach that can allow the Analyst to choose the appropriate multicriteria method during expertise problems. The status of an expert is not absolute: it is dependent upon situational context, DM needs, and other background considerations. In what follows, we will use the term “Study of risk” (SR) to designate the large category of problems that Analysts/Experts have to handle. SR represents problems that are set by the DM or stakeholders and reframed by the Analyst. For this purpose, we will first review the basic concepts used in multicriteria decision aiding approaches. We will then present the main principles of the multicriteria decision aiding methods. Finally, we propose a typology in four SR categories and a choice of multicriteria decision aiding methods that are adapted to each category.


  1. Bana E Costa, C.A. (1993). Les Problématiques dans le Cadre de l’activité d’aide à la Décision, Document No. 80, LAMSADE. Université de Paris-Dauphine.Google Scholar
  2. Bedford T., Cooke R. (2003). Probabilistic risk analysis: Foundations and methods. Cambridge University Press. United Kingdom. 393 p. 12. BOURDIEU P. (1992). Réponses. Paris: Seuil.Google Scholar
  3. Delavallee, E. (1995). Culture d’entreprise: la contribution de Herbert Simon. [En ligne], Centre de Recherche de l’IAE de Paris: Groupe de REcherche en Gestion des ORganisations,
  4. Guitouni, A., & Martel, J.-M. (1998). Tentative guidelines to help choosing an appropriate MCDA method. European Journal of Operational Research, 109(2), 501–521.CrossRefGoogle Scholar
  5. Hwang, C.-L., & Youn, K. (1981). Multiple attribute decision making, methods and application: A state of the art survey. New York: Springer.CrossRefGoogle Scholar
  6. IRGC. (2018). Guidelines for the governance of systemic risks. ETH Zurich.Google Scholar
  7. Joerin, F. (1997). Décider sur le territoire, Proposition d’une approche par utilisation de SIG et de méthodes d’analyse multicritère. Thèse de doctorat, Département de génie rural, Ecole polytechnique fédérale de Lausanne.Google Scholar
  8. Korte J., Aven T. (2002). On the use of risk analysis in different decision settings, 13ESREL 2002 European conference, Lyon.Google Scholar
  9. Landry, M. (1995). A note on the concept of problem. Organization Studies, 16(2), 315–343.CrossRefGoogle Scholar
  10. Landry, M., Banville, C., & Oral, M. (1996). Model legitimisation in operational research. European Journal of Operational Research, 92, 443–457.CrossRefGoogle Scholar
  11. Linkov, I., & Trump, B. D. (2019). The science and practice of resilience. Springer International Publications.Google Scholar
  12. Linkov, I., Rosoff, H., Valverde, L. J., Bates, M. E., Trump, B., Friedman, D., et al. (2012). Civilian response corps force review: The application of multi-criteria decision analysis to prioritize skills required for future diplomatic missions. Journal of Multi-Criteria Decision Analysis, 19(3–4), 155–168.CrossRefGoogle Scholar
  13. Linkov, I., Trump, B., Jin, D., Mazurczak, M., & Schreurs, M. (2014). A decision-analytic approach to predict state regulation of hydraulic fracturing. Environmental Sciences Europe, 26(1), 20.CrossRefGoogle Scholar
  14. Linkov, I., Trump, B. D., Wender, B. A., Seager, T. P., Kennedy, A. J., & Keisler, J. M. (2017). Integrate life-cycle assessment and risk analysis results, not methods. Nature Nanotechnology, 12(8), 740.CrossRefGoogle Scholar
  15. March, J. G., & Simon, H. A. (1959). Organizations. New York: John Wiley and Sons. Ltd.Google Scholar
  16. March, J. G., & Simon, H. A. (1991). Les organisations, problèmes psycho- sociologiques. Paris: Dunod.Google Scholar
  17. Mason, R. O., & Mitroff, I. I. (1981). Challenging strategic planning assumptions. New York: Wiley.Google Scholar
  18. Mintzberg, H. (1973). The nature of managerial work. New York: Harper Collins publishers.Google Scholar
  19. Ozernoy, V. M. (1987). Some issues in mathematical modelling of multiple criteria decision making problems. Mathematical Modelling, 8, 212–215.CrossRefGoogle Scholar
  20. Ozernoy, V. M. (1988). Some issues in designing an expert system for multiple criteria decision making. Acta Psychologica, 68(1–3), 237–253.CrossRefGoogle Scholar
  21. Palma-Oliveira, J. M., Trump, B. D., Wood, M. D., & Linkov, I. (2018). Community-driven hypothesis testing: A solution for the tragedy of the anticommons. Risk Analysis, 38(3), 620–634.CrossRefGoogle Scholar
  22. Parkin, J. (1996). Organizational decision making and the project manager. International Journal of Project Management, 14, 257–263.CrossRefGoogle Scholar
  23. Pomerol, J.-C., & Barba-Romero, S. (1993). Choix multicritère dans l’entreprise: principe et pratique. Collection Informatique. France: Edition Hermes, 391 p.Google Scholar
  24. Rosness R., Hovden J. (2001). From power games to hot cognition – A contingency model of safety related decision-making, Mold Seminar, Molde.Google Scholar
  25. Roy, B. (1985). Méthodologie Multicriteres d’Aide à la Décision. Paris: Economica, 423 p.Google Scholar
  26. Roy, B., & Bouyssou, D. (1993). Aide Multicritère à la Décision: Méthodes et Cas (Vol. 695). Paris: Economica.Google Scholar
  27. Rycroft, T., Trump, B., Poinsatte-Jones, K., & Linkov, I. (2018). Nanotoxicology and nanomedicine: Making development decisions in an evolving governance environment. Journal of Nanoparticle Research, 20(2), 52.CrossRefGoogle Scholar
  28. Savage, G. T., Nix, T. W., Whitehead, C. J., & Blair, J. D. (1991). Strategies for assessing and managing stakeholders. Academy of Management Executive, 5(2), 61–75.Google Scholar
  29. Simon, H. A. (1957). Administrative bihaviour. New York: Mac Millan.Google Scholar
  30. Simon, H. A. (1966). Scientific discovery and the psychology of problem solving. In R. Colodny (Ed.), Mind and cosmos. University of Pittsburgh Press.Google Scholar
  31. Simon, H. A. (1982). Models of bounded rationality. Cambridge: MIT Press.Google Scholar
  32. Teghem, J., Delhaye, C., & Kunsh, P. L. (1989). An interactive decision support system (IDSS) for multicriteria decision aid. Mathematical and Computer Modelling, 12(10), 1311–1320.CrossRefGoogle Scholar
  33. Trump, B. D., Florin, M. V., & Linkov, I. (2018a). IRGC resource guide on resilience (Volume 2) (No. BOOK). International Risk Governance Center (IRGC).Google Scholar
  34. Trump, B. D., Kadenic, M., & Linkov, I. (2018b). A sustainable Arctic: Making hard decisions. Arctic, Antarctic, and Alpine Research, 50(1), e1438345.CrossRefGoogle Scholar
  35. Trump, B. D., Cegan, J. C., Wells, E., Keisler, J., & Linkov, I. (2018c). A critical juncture for synthetic biology: Lessons from nanotechnology could inform public discourse and further development of synthetic biology. EMBO Reports, 19(7), e46153.CrossRefGoogle Scholar
  36. Vincke, P. (1989). L’aide multicritère à la décisi on. France: Editions Ellipses.Google Scholar
  37. Yatsalo, B., Gritsyuk, S., Sullivan, T., Trump, B., & Linkov, I. (2016). Multi-criteria risk management with the use of DecernsMCDA: Methods and case studies. Environment Systems and Decisions, 36(3), 266–276.CrossRefGoogle Scholar
  38. Yu, W. (1992). Aide multicritère à la décision dans le cadre de la problématique du tri: Concepts, Méthodes et Applications. Thèse de doctorat, Université de Paris-Dauphine, 190 p.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Myriam Merad
    • 1
  • Benjamin D. Trump
    • 2
  1. 1.Centre National de la Recherche ScientifiqueUMR ESPACEParisFrance
  2. 2.US Army Corps of Engineers, Engineer Research and Development CenterConcordUSA

Personalised recommendations