Advertisement

Evaluation of Disjunctive Programs in WASP

  • Mario Alviano
  • Giovanni Amendola
  • Carmine DodaroEmail author
  • Nicola Leone
  • Marco Maratea
  • Francesco Ricca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11481)

Abstract

Answer Set Programming (ASP) is a well-established declarative programming language based on logic. The success of ASP is mainly due to the availability of efficient ASP solvers, therefore their development is still an important research topic. In this paper we report the recent improvements of the well-known ASP solver wasp. The new version of wasp includes several improvements of the main solving strategies and advanced reasoning techniques for computing paracoherent answer sets. Indeed, wasp is the first ASP solver handling paracoherent reasoning under two mainstream semantics, namely semi-stable and semi-equilibrium. However, semi-equilibrium semantics may require the introduction of several disjunctive rules, which are usually considered as a source of inefficiency for modern solvers. Such a drawback is addressed in wasp by implementing ad-hoc techniques to efficiently handle disjunctive logic programs. These techniques are presented and evaluated in this paper.

Keywords

Answer set programming Answer set computation Disjunctive logic programs 

References

  1. 1.
    Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set expansion from the web via ASP. In: Technical Communications of ICLP. OASICS, vol. 58, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017).  https://doi.org/10.4230/OASIcs.ICLP.2017.1
  2. 2.
    Alviano, M., et al.: The ASP system DLV2. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 215–221. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61660-5_19CrossRefGoogle Scholar
  3. 3.
    Alviano, M., Dodaro, C.: Completion of disjunctive logic programs. In: IJCAI, pp. 886–892. IJCAI/AAAI Press (2016)Google Scholar
  4. 4.
    Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 54–66. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40564-8_6CrossRefGoogle Scholar
  5. 5.
    Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 40–54. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23264-5_5CrossRefGoogle Scholar
  6. 6.
    Alviano, M., Dodaro, C., Marques-Silva, J., Ricca, F.: Optimum stable model search: algorithms and implementation. J. Log. Comput. (2015, in press).  https://doi.org/10.1093/logcom/exv061
  7. 7.
    Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The disjunctive datalog system DLV. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 282–301. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24206-9_17CrossRefGoogle Scholar
  8. 8.
    Amendola, G.: Solving the stable roommates problem using incoherent answer set programs. In: RiCeRcA Workshop. CEUR Workshop Proceedings, vol. 2272. CEUR-WS.org (2018)Google Scholar
  9. 9.
    Amendola, G., Dodaro, C., Faber, W., Leone, N., Ricca, F.: On the computation of paracoherent answer sets. In: AAAI, pp. 1034–1040. AAAI Press (2017)Google Scholar
  10. 10.
    Amendola, G., Dodaro, C., Faber, W., Ricca, F.: Externally supported models for efficient computation of paracoherent answer sets. In: AAAI, pp. 1720–1727. AAAI Press (2018)Google Scholar
  11. 11.
    Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer set programming to the conference paper assignment problem. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 164–178. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49130-1_13CrossRefGoogle Scholar
  12. 12.
    Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium models for paracoherent answer set programs. Artif. Intell. 234, 219–271 (2016).  https://doi.org/10.1016/j.artint.2016.01.011MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Amendola, G., Eiter, T., Leone, N.: Modular paracoherent answer sets. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 457–471. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11558-0_32CrossRefGoogle Scholar
  14. 14.
    Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU games via answer set programming. In: IJCAI, pp. 38–45. IJCAI/AAAI Press (2016)Google Scholar
  15. 15.
    Amendola, G., Ricca, F., Truszczynski, M.: Generating hard random Boolean formulas and disjunctive logic programs. In: IJCAI, pp. 532–538 (2017).  https://doi.org/10.24963/ijcai.2017/75. ijcai.org
  16. 16.
    Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Ann. Math. Artif. Intell. 12(1–2), 53–87 (1994).  https://doi.org/10.1007/BF01530761MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011).  https://doi.org/10.1145/2043174.2043195CrossRefGoogle Scholar
  18. 18.
    Clark, K.L.: Negation as failure. In: Symposium on Logic and Data Bases, pp. 293–322. Advances in Data Base Theory. Plemum Press (1977)Google Scholar
  19. 19.
    Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences. Constraints 15(4), 485–515 (2010).  https://doi.org/10.1007/s10601-010-9095-yMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3), 53–68 (2016)CrossRefGoogle Scholar
  21. 21.
    Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract gringo. TPLP 15(4–5), 449–463 (2015).  https://doi.org/10.1017/S1471068415000150MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp series 3. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 368–383. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23264-5_31CrossRefGoogle Scholar
  23. 23.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012).  https://doi.org/10.1016/j.artint.2012.04.001MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gebser, M., Kaufmann, B., Schaub, T.: Advanced conflict-driven disjunctive answer set solving. In: IJCAI, pp. 912–918. IJCAI/AAAI (2013)Google Scholar
  25. 25.
    Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set programming competition. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 3–9. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61660-5_1CrossRefzbMATHGoogle Scholar
  26. 26.
    Gebser, M., Schaub, T.: Tableau calculi for logic programs under answer set semantics. ACM Trans. Comput. Log. 14(2), 15:1–15:140 (2013).  https://doi.org/10.1145/2480759.2480767MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991).  https://doi.org/10.1007/BF03037169CrossRefzbMATHGoogle Scholar
  28. 28.
    Gençay, E., Schüller, P., Erdem, E.: Applications of non-monotonic reasoning to automotive product configuration using answer set programming. J. Intell. Manuf. 30(3), 1407–1422 (2019).  https://doi.org/10.1007/s10845-017-1333-3CrossRefGoogle Scholar
  29. 29.
    Giunchiglia, E., Lierler, Y., Maratea, M.: Sat-based answer set programming. In: AAAI, pp. 61–66. AAAI Press/The MIT Press (2004)Google Scholar
  30. 30.
    Janhunen, T.: Cross-translating answer set programs using the ASPTOOLS collection. In: KI 32(2-3), 183–184 (2018).  https://doi.org/10.1007/s13218-018-0529-9CrossRefGoogle Scholar
  31. 31.
    Janhunen, T., Niemelä, I.: GNT—a solver for disjunctive logic programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 331–335. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-24609-1_29CrossRefzbMATHGoogle Scholar
  32. 32.
    Koch, C., Leone, N., Pfeifer, G.: Enhancing disjunctive logic programming systems by SAT checkers. Artif. Intell. 151(1–2), 177–212 (2003).  https://doi.org/10.1016/S0004-3702(03)00078-XMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif. Intell. 157(1–2), 115–137 (2004).  https://doi.org/10.1016/j.artint.2004.04.004MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DEMACSUniversity of CalabriaRendeItaly
  2. 2.DIBRISUniversity of GenoaGenoaItaly

Personalised recommendations