Train Scheduling with Hybrid ASP

  • Dirk Abels
  • Julian Jordi
  • Max Ostrowski
  • Torsten SchaubEmail author
  • Ambra Toletti
  • Philipp Wanko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11481)


We present an ASP-based solution to real-world train scheduling problems, involving routing, scheduling, and optimization. To this end, we pursue a hybrid approach that extends ASP withdifference constraints to account for a fine-grained timing. More precisely, we exemplarily show how the hybrid ASP system clingo[DL] can be used to tackle demanding planning-and-scheduling problems. In particular, we investigate how to boost performance by combining distinct ASP solving techniques, such as approximation, heuristic, and optimization strategies.


  1. 1.
    Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems, vol. 39. Springer, New York (2012)zbMATHGoogle Scholar
  2. 2.
    Bofill, M., Palahí, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with SAT modulo theories. Constraints 17(3), 273–303 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Caprara, A., Fischetti, M., Toth, P.: Modeling and solving the train timetabling problem. Oper. Res. 50, 851–861 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract gringo. Theory Pract. Log. Program. 15(4–5), 449–463 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gebser, M., et al.: Potassco User Guide, 2nd edn. (2015).
  6. 6.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with clingo 5. In: Technical Communications of the International Conference on Logic Programming (ICLP 2016), vol. 52, pp. 2:1–2:15. OASIcs (2016)Google Scholar
  7. 7.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., Wanko, P.: Clingo goes linear constraints over reals and integers. Theory Pract. Log. Program. 17(5–6), 872–888 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Janhunen, T., Liu, G., Niemelä, I.: Tight integration of non-ground answer set programming and satisfiability modulo theories. In: Proceedings of the Workshop on Grounding and Transformation for Theories with Variables (GTTV 2011), pp. 1–13 (2011)Google Scholar
  10. 10.
    Lifschitz, V.: Answer set planning. In: Proceedings of the International Conference on Logic Programming (ICLP 1999), pp. 23–37. MIT Press (1999)Google Scholar
  11. 11.
    Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 32–42. AAAI Press (2012)Google Scholar
  12. 12.
    Oliveira, E., Smith, B.: A job-shop scheduling model for the single-track railway scheduling problem. University of Leeds, LU SCS RR (21) (2000)Google Scholar
  13. 13.
    Pellegrini, P., Douchet, G., Marlière, G., Rodriguez, J.: Real-time train routing and scheduling through mixed integer linear programming: heuristic approach. In: Proceedings of the International Conference on Industrial Engineering and System Management, pp. 1–5 (2013)Google Scholar
  14. 14.
    Pellegrini, P., Marlière, G., Pesenti, R., Rodriguez, J.: RECIFE-MILP: an effective MILP-based heuristic for the real-time railway traffic management problem. IEEE Trans. Intell. Transp. Syst. 16(5), 2609–2619 (2015)CrossRefGoogle Scholar
  15. 15.
    Rodriguez, J.: A constraint programming model for real-time train scheduling at junctions. Transp. Res.: Methodol. 41(2), 231–245 (2007)CrossRefGoogle Scholar
  16. 16.
    Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Törnquist, J.: Computer-based decision support for railway traffic scheduling and dispatching: a review of models and algorithms. In: Proceedings of the Workshop on Algorithmic Methods and Models for Optimization of Railways, vol. 2. OASIcs (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Potassco SolutionsPotsdamGermany
  2. 2.SBBBernSwitzerland
  3. 3.University of PotsdamPotsdamGermany
  4. 4.Simon Fraser UniversityBurnabyCanada
  5. 5.Griffith UniversityBrisbaneAustralia

Personalised recommendations