Advertisement

Pedestrian Attitudes to Shared-Space Interactions with Autonomous Vehicles – A Virtual Reality Study

  • Christopher G. BurnsEmail author
  • Luis Oliveira
  • Vivien Hung
  • Peter Thomas
  • Stewart Birrell
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 964)

Abstract

The automotive industry is steadily moving towards fully autonomous vehicles, and it is becoming important to understand attitudes towards them. This study is an aspect of the www.ukautodrive.com project with Jaguar-Land Rover, RDM Automotive, and The University of Warwick’s Warwick Manufacturing Group (WMG). Uniquely, we used a prototype fully autonomous vehicle, and were interested in pedestrian attitudes towards this vehicle manoeuvring in close proximity. Using virtual reality (VR) cameras, we filmed 18 manoeuvring scenarios and presented them using VR equipment. Participants answered four short rating-scale questions after each exposure, and self-reported less trust and safety when the vehicle was faster and closer. This work has implications both for real-world autonomous vehicles, and for further use of VR technology. That the VR environments seemed sufficiently convincing to evoke consistent responses from volunteers represents a considerable opportunity across a variety of experimental domains, and can improve further with advances in this technology.

Keywords

Trust Safety Autonomous vehicles Human factors 

References

  1. 1.
    Kun, A.L., Boll, S., Schmidt, A.: Shifting gears: user interfaces in the age of autonomous driving. IEEE Pervasive Comput. 15, 32–38 (2016).  https://doi.org/10.1109/MPRV.2016.14CrossRefGoogle Scholar
  2. 2.
    Meschtscherjakov, A., Tscheligi, M., Fröhlich, P., McCall, R., Riener, A., Palanque, P.: Mobile interaction with and in autonomous vehicles. In: Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services - MobileHCI 2017, pp. 1–6 (2017).  https://doi.org/10.1145/3098279
  3. 3.
    Fu, X., Vernier, M., Kurt, A., Redmill, K., Ozguner, U.: Smooth: improved short-distance mobility for a smarter city. In: Proceedings of the 2nd International Workshop on Science of Smart City Operations and Platforms Engineering - SCOPE 2017, pp. 46–51 (2017).  https://doi.org/10.1145/3063386.3063760
  4. 4.
    Pendleton, S., Uthaicharoenpong, T., Chong, Z.J., Fu, G.M.J., Qin, B., Liu, W., Shen, X., Weng, Z., Kamin, C., Ang, M.A., Kuwae, L.T., Marczuk, K.A., Andersen, H., Feng, M., Butron, G., Chong, Z.Z., Ang, M.H., Frazzoli, E., Rus, D.: Autonomous golf cars for public trial of mobility-on-demand service. IEEE International Conference on Intelligent Robots and Systems, December 2015, pp. 1164–1171 (2015).  https://doi.org/10.1109/iros.2015.7353517
  5. 5.
    Merat, N., Louw, T., Madigan, R., Wilbrink, M., Schieben, A.: What externally presented information do VRUs require when interacting with fully Automated Road Transport Systems in shared space? Accid. Anal. Prev. 118, 244–252 (2018).  https://doi.org/10.1016/j.aap.2018.03.018CrossRefGoogle Scholar
  6. 6.
    Deb, S., Carruth, D.W., Sween, R., Strawderman, L., Garrison, T.M.: Efficacy of virtual reality in pedestrian safety research. Appl. Ergon. 65, 449–460 (2017).  https://doi.org/10.1016/j.apergo.2017.03.007CrossRefGoogle Scholar
  7. 7.
    Simpson, G., Johnston, L., Richardson, M.: An investigation of road crossing in a virtual environment. Accid. Anal. Prev. 35, 787–796 (2003).  https://doi.org/10.1016/S0001-4575(02)00081-7CrossRefGoogle Scholar
  8. 8.
    Chittaro, L., Zangrando, N.: The persuasive power of virtual reality: effects of simulated human distress on attitudes towards fire safety. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) Persuasive Technology, pp. 58–69. Springer, Heidelberg (2010)  https://doi.org/10.1007/978-3-642-13226-1_8CrossRefGoogle Scholar
  9. 9.
    Sheridan, T.B.: Musings on telepresence and virtual presence. Presence Teleoperators Virtual Environ. 1, 120–126 (1992).  https://doi.org/10.1162/pres.1992.1.1.120CrossRefGoogle Scholar
  10. 10.
    Whitelock, D., Romano, D., Jelfs, A., Brna, P.: Perfect presence: what does this mean for the design of virtual learning environments? Educ. Inf. Technol. 5, 277–289 (2000)CrossRefGoogle Scholar
  11. 11.
    Keferböck, F., Riener, A.: Strategies for negotiation between autonomous vehicles and pedestrians. In: Mensch Und Computer 2015 Workshopband, pp. 525–532. Oldenbourg Wissenschaftsverlag, Stuttgart (2015)Google Scholar
  12. 12.
    Böckle, M.-P., Brenden, A.P., Klingegård, M., Habibovic, A., Bout, M.: SAV2P – exploring the impact of an interface for shared automated vehicles on pedestrians’ experience. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct - AutomotiveUI 2017, pp. 136–140 (2017).  https://doi.org/10.1145/3131726.3131765
  13. 13.
    Chang, C., Toda, K., Sakamoto, D., Igarashi, T.: Eyes on a car: an interface design for communication between an autonomous car and a pedestrian. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2017), pp. 65–73 (2017).  https://doi.org/10.1145/3122986.3122989
  14. 14.
    NHTSA. Automated Vehicles for Safety [WWW Document]. National Highway Traffic Safety Administration (2018). https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety. Accessed 13 Apr 18)
  15. 15.
    BBC. Tesla in fatal California crash was on Autopilot. BBC News March 31th (2018)Google Scholar
  16. 16.
    Levin, S., Wong, J.C.: Self-driving Uber kills Arizona woman in first fatal crash involving pedestrian. Guardian (UK Edition), 19 March 2018 (2018)Google Scholar
  17. 17.
    Perelló-March, J., Burns, C., Elliott, M., Stewart, B.: Integrating trust in automation into driver state monitoring systems. In: International Conference on Human Interaction & Emerging Technologies, 22–24 August 2019. Université Côte d'Azur, Nice (2019)Google Scholar
  18. 18.
    Mirnig, A.G., Wintersberger, P., Sutter, C., Ziegler, J.: A framework for analyzing and calibrating trust in automated vehicles. In: Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct - Automotive’UI 2016, pp. 33–38. (2016).  https://doi.org/10.1145/3004323.3004326
  19. 19.
    Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 77, 167–181 (2015).  https://doi.org/10.1016/j.tra.2015.04.003CrossRefGoogle Scholar
  20. 20.
    Rödel, C., Stadler, S., Meschtscherjakov, A., Tscheligi, M.: Towards autonomous cars: the effect of autonomy levels on acceptance and user experience. In: Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 1–8 (2014).  https://doi.org/10.1145/2667317.2667330
  21. 21.
    Kennedy, R.S., Lane, N.E., Kevin, S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993).  https://doi.org/10.1207/s15327108ijap0303CrossRefGoogle Scholar
  22. 22.
    Duncan, D.B.: Multiple range and multiple F tests. Biometrics 11, 1–42 (1955)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lee, D.N., Young, D.S., Reddish, P.E., Lough, S., Clayton, T.M.: Visual timing in hitting an accelerating ball. Q. J. Exp. Psychol. A 35, 333–346 (1983)CrossRefGoogle Scholar
  24. 24.
    Smeets, J.B., Brenner, E., Trébuchet, S., Mestre, D.R.: Is judging time-to-contact based on ‘tau’? Perception 25, 583–590 (1996)CrossRefGoogle Scholar
  25. 25.
    Sun, R., Zhuang, X., Wu, C., Zhao, G., Zhang, K.: The estimation of vehicle speed and stopping distance by pedestrians crossing streets in a naturalistic traffic environment. Transp. Res. Part F: Traffic Psychol. Behav. 30, 97–106 (2015)CrossRefGoogle Scholar
  26. 26.
    Liu, Y.-C., Tung, Y.-C.: Risk analysis of pedestrians’ road-crossing decisions: effects of age, time gap, time of day, and vehicle speed. Saf. Sci. 63, 77–82 (2014)CrossRefGoogle Scholar
  27. 27.
    Butler, A.A., Lord, S.R., Fitzpatrick, R.C.: Perceptions of speed and risk: experimental studies of road crossing by older people. PLoS One 11(4), e0152617 (2016).  https://doi.org/10.1371/journal.pone.0152617CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christopher G. Burns
    • 1
    Email author
  • Luis Oliveira
    • 1
  • Vivien Hung
    • 1
  • Peter Thomas
    • 2
  • Stewart Birrell
    • 1
  1. 1.WMG, University of WarwickCoventryUK
  2. 2.Jaguar Land RoverCoventryUK

Personalised recommendations