Advertisement

From Mathesis Universalis to Fixed Points and Related Set-Theoretic Concepts

  • Gerhard JägerEmail author
  • Silvia Steila
Chapter
Part of the Synthese Library book series (SYLI, volume 412)

Abstract

This article is about fixed point axioms and related principles in Kripke-Platek environments. We begin with surveying some principles and results of Jäger and Steila (J Symbol Log, 2018) and turn to more recent developments afterwards.

Notes

Acknowledgements

This publication was supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

References

  1. Barwise, J. (1975). Admissible sets and structures (Perspectives in mathematical logic, Vol. 7). Berlin: Springer.CrossRefGoogle Scholar
  2. Buchholz, W., Feferman, S., Pohlers, W., & Sieg, W. (1981). Iterated inductive definitions and subsystems of analysis: Recent proof-theoretical studies (Lecture notes in mathematics, Vol. 897). Berlin/New York: Springer.CrossRefGoogle Scholar
  3. Feferman, S. (2016). The operational perspective: Three routes. In R. Kahle, T. Strahm, & T. Studer (Eds.), Advances in proof theory (Progress in computer science and applied logic). Cham: Birkhäuser.Google Scholar
  4. Jäger, G. (1982). Zur Beweistheorie der Kripke-Platek-Mengenlehre über den natürlichen Zahlen. Archiv für mathematische Logik und Grundlagenforschung, 22(3–4), 121–139.Google Scholar
  5. Jäger, G., & Steila, S. (2018a). About some fixed point axioms and related principles in Kripke-Platek environments. Journal of Symbolic Logic, 83(2), 642–668.CrossRefGoogle Scholar
  6. Jäger, G., & Steila, S. (2018b). About some fixed point axioms and related principles in Kripke-Platek environments. Part II: Adding axiom (Beta) (In preparation).Google Scholar
  7. Knaster, B. (1928). Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise de Mathématiques, 6, 133–134.Google Scholar
  8. Kunen, K. (1980). Set theory. An introduction to independence proofs (Studies in logic and the foundations of mathematics, Vol. 102). Amsterdam/New York/Oxford: North-Holland.Google Scholar
  9. Mathias, A. R. D. (2001). The strength of Mac Lane set theory. Annals of Pure and Applied Logic, 110(1), 107–234.CrossRefGoogle Scholar
  10. Moschovakis, Y. N. (1974). Elementary induction on abstract structures (Studies in logic and the foundations of mathematics, Vol. 77). Mineola: North-Holland. Reprinted by Dover Publications (2008).Google Scholar
  11. Rathjen, M. (2014). Relativized ordinal analysis: The case of power Kripke-Platek set theory. Annals of Pure and Applied Logic, 165(1), 316–339.CrossRefGoogle Scholar
  12. Sato, K. (2015). Full and hat inductive definitions are equivalent in NBG. Archive for Mathematical Logic, 54, 75–112.CrossRefGoogle Scholar
  13. Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5(2), 285–309.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of BernBernSwitzerland
  2. 2.University of BernBernSwitzerland

Personalised recommendations