Note on the Benefit of Proof Representations by Name

  • Matthias BaazEmail author
Part of the Synthese Library book series (SYLI, volume 412)


In mathematical proofs axioms and intermediary results are often represented by their names. It is however undecidable whether such a description corresponds to an underlying proof. This implies that there is sometimes no recursive bound of the complexity of the simplest underlying proof in the complexity of the abstract proof description, i.e. the abstract proof description might be non-recursively simpler.


  1. Aguilera, J. P., & Baaz, M. (2018). Unsound inferences make proofs shorter. arXiv preprint arXiv:1608.07703, to appear in the Journal of Symbolic Logic.Google Scholar
  2. Baaz, M., & Wojtylak, P. (2008). Generalizing proofs in monadic languages. Annals of Pure and Applied Logic, 154(2), 71–138.CrossRefGoogle Scholar
  3. Bourbaki, N. (2013). General topology: Chapters 1–4 (Vol. 18). Springer Science & Business Media, London, New York.Google Scholar
  4. Gentzen, G. (1935). Untersuchungen über das logische Schließen. I. Mathematische zeitschrift, 39(1), 176–210.CrossRefGoogle Scholar
  5. Hilbert, D. (1899). Grundlagen der Geometrie. Teubner.Google Scholar
  6. Krajíček, J., & Pudlák, P. (1988). The number of proof lines and the size of proofs in first order logic. Archive for Mathematical Logic, 27(1), 69–84.CrossRefGoogle Scholar
  7. Mac Lane, S. (1934). Abgekürzte Beweise im Logikkalkül. Hubert.Google Scholar
  8. Orevkov, V. P. (1984). Reconstitution of the proof from its scheme (russian abstract). 8th Soviet Conference on Mathematical Logic. Novosibirsk (p. 133).Google Scholar
  9. Takeuti, G. (1975). Proof Theory 2nd edition (2003) Dover Publications Mineola New York.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Discrete Mathematics and GeometryTU WienViennaAustria

Personalised recommendations