What Is a Task?

  • Davood Gozli


There have been recent attempts by experimental psychologists to explicate the nature of an experimental task. This chapter reviews three such attempts, according to which a task is (1) a goal-directed schema, (2) a rule-based organization of stimulus–response events that shield the actors’ attention against distractors, and (3) a depersonalized goal. These approaches underscore the importance of goals and acknowledge how a task selectively renders parts of a situation visible for the agent performing a task. With reference to goal hierarchies, we can also think of a task in terms of a fixed set of superordinate goals, or from a fixed normative-descriptive perspective, which views actors as equivalent and replaceable. The description of the task can be applied to the activities of experimental psychologists, highlighting the subsequent outcomes, including depersonalized research projects, shields against “distractors,” including questions about societal relevance and theoretical synthesis.


Philosophy of social science Experimental psychology Task Performance Behavior Definition Conceptual analysis 


  1. Adam, J., Hommel, B., & Umiltà, C. (2005). Preparing for perception and action (II): Automatic and effortful processes in response cueing. Visual Cognition, 12(8), 1444–1473.CrossRefGoogle Scholar
  2. Adam, J. J., Hommel, B., & Umiltà, C. (2003). Preparing for perception and action (I): The role of grouping in the response-cuing paradigm. Cognitive Psychology, 46(3), 302–358.PubMedCrossRefGoogle Scholar
  3. Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Science, 12, 193–200.CrossRefGoogle Scholar
  4. Bergner, R. M. (2016). What is behaviour? And why is it not reducible to biological states of affairs? Journal of Theoretical and Philosophical Psychology, 36, 41–55.CrossRefGoogle Scholar
  5. Bergner, R. M. (2017). What is a person? What is the self? Formulations for a science of psychology. Journal of Theoretical and Philosophical Psychology, 37(2), 77–90.CrossRefGoogle Scholar
  6. Bilalić, M., McLeod, P., & Gobet, F. (2008). Why good thoughts block better ones: The mechanism of the pernicious Einstellung (set) effect. Cognition, 108(3), 652–661.PubMedCrossRefGoogle Scholar
  7. Billig, M. (2013). Learn to write badly: How to succeed in the social sciences. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  8. Bruner, J. S. (1964). The course of cognitive growth. American Psychologist, 19(1), 1–15.CrossRefGoogle Scholar
  9. Danziger, K. (1997). Naming the mind. London, UK: Sage Publications.Google Scholar
  10. De Houwer, J. (2011). Why the cognitive approach in psychology would profit from a functional approach and vice versa. Perspectives on Psychological Science, 6(2), 202–209.PubMedCrossRefGoogle Scholar
  11. Dreisbach, G. (2012). Mechanisms of cognitive control: The functional role of task rules. Current Directions in Psychological Science, 21, 227–231.CrossRefGoogle Scholar
  12. Dreisbach, G., & Fröber, K. (2018). On how to be flexible (or not): Modulation of the stability-flexibility balance. Current Directions in Psychological Science, 28(1), 3–9.CrossRefGoogle Scholar
  13. Dreisbach, G., Goschke, T., & Haider, H. (2007). The role of task rules and stimulus–response mappings in the task switching paradigm. Psychological Research, 71, 383–392.PubMedCrossRefGoogle Scholar
  14. Dreisbach, G., & Wenke, D. (2011). The shielding function of task sets and its relaxation during task switching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1540–1546.PubMedGoogle Scholar
  15. Eitam, B., Shoval, R., & Yeshurun, Y. (2015). Seeing without knowing: Task relevance dissociates between visual awareness and recognition. Annals of the New York Academy of Sciences, 1339, 125–137.PubMedCrossRefGoogle Scholar
  16. Eitam, B., Yeshurun, Y., & Hassan, K. (2013). Blinded by irrelevance: Pure irrelevance induced “blindness”. Journal of Experimental Psychology: Human Perception and Performance, 39, 611–615.PubMedGoogle Scholar
  17. Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240.PubMedGoogle Scholar
  18. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149.CrossRefGoogle Scholar
  19. Fitts, P. M., & Seeger, C. M. (1953). S-R compatibility: Spatial characteristics of stimulus and response codes. Journal of Experimental Psychology, 46(3), 199–210.PubMedCrossRefGoogle Scholar
  20. Freedberg, M., Wagschal, T. T., & Hazeltine, E. (2014). Incidental learning and task boundaries. Journal of Experimental Psychology. Learning, Memory, and Cognition, 40(6), 1680–1700.PubMedCrossRefGoogle Scholar
  21. Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task set switching. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 331–355). Cambridge, MA: MIT Press.Google Scholar
  22. Gozli, D. G. (2017). Behaviour versus performance: The veiled commitment of experimental psychology. Theory & Psychology, 27, 741–758.CrossRefGoogle Scholar
  23. Gozli, D. G., & Deng, W. (2018). Building blocks of psychology: On remaking the unkept promises of early schools. Integrative Psychological and Behavioral Science, 52, 1–24.PubMedCrossRefGoogle Scholar
  24. Gozli, D. G., & Dolcini, N. (2018). Reaching into the unknown: Actions, goal hierarchies, and explorative agency. Frontiers in Psychology, 9, 266.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hazeltine, E., & Schumacher, E. H. (2016). Understanding central processes: The case against simple stimulus-response associations and for complex task representation. In B. H. Ross (Ed.), Psychology of learning and motivation (Vol. 64, pp. 195–245). Amsterdam, The Netherland: Academic Press.Google Scholar
  26. Hibberd, F. J. (2014). The metaphysical basis of a process psychology. Journal of Theoretical and Philosophical Psychology, 34(3), 161–186.CrossRefGoogle Scholar
  27. Hibberd, F. J., & Gozli, D. G. (2017). Psychology’s fragmentation and neglect of foundational assumptions: An interview with Fiona J. Hibberd. Europe’s Journal of Psychology, 13, 366–374.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hommel, B. (1997). Toward an action-concept model of stimulus-response compatibility. In B. Hommel & W. Prinz (Eds.), Theoretical issues in stimulus-response compatibility (pp. 281–320). Amsterdam, The Netherland: Elsevier.CrossRefGoogle Scholar
  29. Hommel, B. (1998). Automatic stimulus-response translation in dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 24, 1368–1384.PubMedGoogle Scholar
  30. Hommel, B. (2000). The prepared reflex: Automaticity and control in stimulus-response translation. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 247–273). Cambridge, MA: MIT Press.Google Scholar
  31. Hommel, B. (2013). Ideomotor action control: On the perceptual grounding of voluntary actions and agents. In W. Prinz, M. Beisert, & A. Herwig (Eds.), Action science: Foundations of an emerging discipline (pp. 113–136). Cambridge, MA: MIT Press.Google Scholar
  32. Hommel, B. (2015). Between persistence and flexibility: The Yin and Yang of action control. In A. J. Elliot (Ed.), Advances in motivation science (Vol. 2, pp. 33–67). New York, NY: Elsevier.Google Scholar
  33. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878.PubMedCrossRefGoogle Scholar
  34. Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental Psychology, 45(3), 188–196.PubMedCrossRefGoogle Scholar
  35. Janczyk, M., & Kunde, W. (2014). The role of effect grouping in free-choice response selection. Acta Psychologica, 150, 49–54.PubMedCrossRefGoogle Scholar
  36. Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 849–874.PubMedCrossRefGoogle Scholar
  37. Kingstone, A., Smilek, D., & Eastwood, J. D. (2008). Cognitive ethology: A new approach for studying human cognition. British Journal of Psychology, 99(3), 317–340.PubMedCrossRefGoogle Scholar
  38. Kleinsorge, T., & Heuer, H. (1999). Hierarchical switching in a multi-dimensional task space. Psychological Research, 62(4), 300–312.CrossRefGoogle Scholar
  39. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility—A model and taxonomy. Psychological Review, 97, 253–270.PubMedCrossRefGoogle Scholar
  40. Künzell, S., Broeker, L., Dignath, D., Ewolds, H., Raab, M., & Thomaschke, R. (2017). What is a task? An ideomotor perspective. Psychological Research, 82(1), 4–11.PubMedCrossRefGoogle Scholar
  41. Logan, G. D. (1990). Repetition priming and automaticity: Common underlying mechanisms? Cognitive Psychology, 22(1), 1–35.CrossRefGoogle Scholar
  42. Mammen, J., & Mironenko, I. (2015). Activity theories and the ontology of psychology: Learning from Danish and Russian experiences. Integrative Psychological and Behavioral Science, 49(4), 681–713.PubMedCrossRefGoogle Scholar
  43. Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1423–1442.Google Scholar
  44. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.PubMedCrossRefGoogle Scholar
  45. Morris, D. (2005). Animals and humans, thinking and nature. Phenomenology and the Cognitive Sciences, 4(1), 49–72.CrossRefGoogle Scholar
  46. Noë, A. (2009). Out of our heads: Why you are not your brain, and other lessons from the biology of consciousness. London, UK: Macmillan.Google Scholar
  47. Noë, A. (2015). Strange tools: Art and human nature. New York, NY: Hill and Wang.Google Scholar
  48. Ossorio, P. (2006). The behavior of persons. Ann Arbor, MI: Descriptive Psychology Press.Google Scholar
  49. Powers, W. T. (1998). Making sense of behavior. Montclair, NJ: Benchmark Publications.Google Scholar
  50. Prinz, W. (2018). Contingency and similarity in response selection. Consciousness and Cognition, 64, 1–248.CrossRefGoogle Scholar
  51. Reeve, T. G., & Proctor, R. W. (1984). On the advance preparation of discrete finger responses. Journal of Experimental Psychology: Human Perception and Performance, 10(4), 541–553.PubMedGoogle Scholar
  52. Rosenbaum, D. A. (1980). Human movement initiation: Specification of arm, direction, and extent. Journal of Experimental Psychology: General, 109(4), 444–474.CrossRefGoogle Scholar
  53. Schumacher, E. H., & Hazeltine, E. (2016). Hierarchical task representation: Task files and response selection. Current Directions in Psychological Science, 25, 449–454.CrossRefGoogle Scholar
  54. Sebanz, N., Knoblich, G., & Prinz, W. (2003). Representing others’ actions: Just like one’s own? Cognition, 88(3), B11–B21.PubMedCrossRefGoogle Scholar
  55. Sebanz, N., Knoblich, G., & Prinz, W. (2005). How two share a task: Corepresenting stimulus-response mappings. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1234–1246.PubMedGoogle Scholar
  56. Sellaro, R., Treccani, B., & Cubelli, R. (2018). When task sharing reduces interference: Evidence for division-of-labour in Stroop-like tasks. Psychological Research, 1–16.
  57. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136(6), 943–974.PubMedCrossRefGoogle Scholar
  58. Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Stimulus-response compatibility: An integrated perspective (pp. 31–86). Amsterdam, The Netherland: Elsevier.Google Scholar
  59. Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28(9), 1059–1074.PubMedCrossRefGoogle Scholar
  60. Smedslund, J. (1991). The pseudoempirical in psychology and the case for psychologic. Psychological Inquiry, 2(4), 325–338.CrossRefGoogle Scholar
  61. Smedslund, J. (2009). The mismatch between current research methods and the nature of psychological phenomena: What researchers must learn from practitioners. Theory & Psychology, 19(6), 778–794.CrossRefGoogle Scholar
  62. Strawson, P. F. (1992). Analysis and metaphysics. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  63. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662.CrossRefGoogle Scholar
  64. Valsiner, J. (2017). From methodology to methods in human psychology. New York, NY: Springer.CrossRefGoogle Scholar
  65. van der Heijden, A. H., & Stebbins, S. (1990). The information-processing approach. Psychological Research, 52(2–3), 197–206.PubMedCrossRefGoogle Scholar
  66. Van Steenbergen, H., Langeslag, S. J., Band, G. P., & Hommel, B. (2014). Reduced cognitive control in passionate lovers. Motivation and Emotion, 38, 444–450.Google Scholar
  67. Wachtel, P. L. (1973). Psychodynamics, behavior therapy, and the implacable experimenter: An inquiry into the consistency of personality. Journal of Abnormal Psychology, 82, 324–334.PubMedCrossRefGoogle Scholar
  68. Wittgenstein, L. (1953). Philosophical investigations. New York, NY: Macmillan.Google Scholar
  69. Yamaguchi, M., Wall, H. J., & Hommel, B. (2017a). Action-effect sharing induces task-set sharing in joint task switching. Cognition, 165, 113–120.PubMedCrossRefGoogle Scholar
  70. Yamaguchi, M., Wall, H. J., & Hommel, B. (2017b). No evidence for shared representations of task sets in joint task switching. Psychological Research, 81(6), 1166–1177.PubMedCrossRefGoogle Scholar
  71. Yamaguchi, M., Wall, H. J., & Hommel, B. (2018). Sharing tasks or sharing actions? Evidence from the joint Simon task. Psychological Research, 82(2), 385–394.PubMedCrossRefGoogle Scholar
  72. Yamaguchi, M., Wall, H. J., & Hommel, B. (2019). The roles of action selection and actor selection in joint task settings. Cognition, 182, 184–192.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Davood Gozli
    • 1
  1. 1.Department of PsychologyUniversity of MacauTaipaMacao

Personalised recommendations