Advertisement

Modelling Flows in Lubrication

  • Andreas AlmqvistEmail author
  • Francesc Pérez-Ràfols
Chapter
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 593)

Abstract

This chapter introduces the reader to lubrication theory and describes the governing equations, models and methods that can be used to simulate various types of lubricated systems. It starts with an introduction to the tribological contact and to the different lubrication regimes. The basis for the classical lubrication theory is then given and thereafter follows a presentation of how to obtain the Reynolds equation by means of scaling and asymptotic analysis of the Navier–Stokes equations. After having obtained the Reynolds equation, a quite elaborate presentation of cavitation algorithms is given. It includes discretisation and presents the analytical solution for a pocket bearing as a benchmark model problem. Then, the concept of homogenisation of surface roughness is introduced. This starts from the simplest iso-viscous and incompressible case, expands to include compressibility with a constant bulk modulus constitutive relation and then also addresses the case of ideal gases. Thereafter, the relation between homogenised coefficients and the Patir and Cheng flow factors is described and finally it is shown how to incorporate the effect of mixed lubrication into the model.

References

  1. Ahmed, S., Goodyer, C. E., & Jimack, P. K. (2012). An efficient preconditioned iterative solution of fully-coupled elastohydrodynamic lubrication problems. Applied Numerical Mathematics, 62(5), 649–663.  https://doi.org/10.1016/j.apnum.2012.02.002.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Almqvist, A. (2011). Homogenization of the Reynolds equation governing hydrodynamic flow in a rotating device. Journal of Tribology, 133(2), 021705.  https://doi.org/10.1115/1.4003650.CrossRefGoogle Scholar
  3. Almqvist, A., & Dasht, J. (2006). The homogenization process of the Reynolds equation describing compressible liquid flow. Tribology International, 39(9), 994–1002. ISSN 0301-679X.  https://doi.org/10.1016/j.triboint.2005.09.036.CrossRefGoogle Scholar
  4. Almqvist, A., & Wall, P. (2016). Modelling cavitation in (elasto)hydrodynamic lubrication. In P. H. Darji (Eds.), Advances in tribology. Rijeka: IntechOpen.  https://doi.org/10.5772/63533.Google Scholar
  5. Almqvist, A., Essel, E. K., Persson, L. E., & Wall, P. (2007a). Homogenization of the unstationary incompressible Reynolds equation. Tribology International, 40(9), 1344–1350. ISSN 0301-679X.  https://doi.org/10.1016/j.triboint.2007.02.021.CrossRefGoogle Scholar
  6. Almqvist, A., Sahlin, F., Larsson, R., & Glavatskih, S. (2007b). On the dry elasto-plastic contact of nominally flat surfaces. Tribology International, 40(4), 574–579. ISSN 0301-679X.  https://doi.org/10.1016/j.triboint.2005.11.008.CrossRefGoogle Scholar
  7. Almqvist, A., Fabricius, J., Spencer, A., & Wall, P. (2011). Similarities and differences between the flow factor method by patir and cheng and homogenization. Journal of Tribology, 133(3), 031702.  https://doi.org/10.1115/1.4004078.CrossRefGoogle Scholar
  8. Almqvist, A., Fabricius, J., & Wall, P. (2012). Homogenization of a Reynolds equation describing compressible flow. Journal of Mathematical Analysis and Applications, 390(2), 456–471. ISSN 0022-247X.  https://doi.org/10.1016/j.jmaa.2012.02.005.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Almqvist, A., Spencer, A., & Wall, P. (2013). Matlab routines solving a linear complementarity problem appearing in lubrication with cavitation. http://www.mathworks.com/matlabcentral/fileexchange/41484.
  10. Almqvist, A., Fabricius, J., Larsson, R., & Wall, P. (2014). A new approach for studying cavitation in lubrication. Journal of Tribology, 136(1), 011706-1–011706-6.  https://doi.org/10.1115/1.4025875.CrossRefGoogle Scholar
  11. Ausas, R. F., Jai, M., & Buscaglia, G. C. (2009). A mass-conserving algorithm for dynamical lubrication problems with cavitation. Journal of Tribology, 131(3):031702.  https://doi.org/10.1115/1.3142903.CrossRefGoogle Scholar
  12. Bayada, G., & Chambat, M. (1988). New models in the theory of the hydrodynamic lubrication of rough surfaces. Journal of Tribology, Transactions of the ASME, 110(3), 402–407. ISSN 0742-4787.Google Scholar
  13. Bayada, G., Martin, S., & Vázquez, C. (2005a). An average flow model of the Reynolds roughness including a mass-flow preserving cavitation model. Journal of Tribology, 127(4), 793–802.  https://doi.org/10.1115/1.2005307.CrossRefGoogle Scholar
  14. Bayada, G., Martin, S., & Vazquez, C. (2005b). Two-scale homogenization of a hydrodynamic Elrod-Adams model. Asymptotic Analysis, 44, 75–110.MathSciNetzbMATHGoogle Scholar
  15. Bayada, G., Cid, B., García, G., & Vázquez, C. (2013). A new more consistent Reynolds model for piezoviscous hydrodynamic lubrication problems in line contact devices. Applied Mathematical Modelling, 37(18–19), 8505–8517.  https://doi.org/10.1016/j.apm.2013.03.072.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Bertocchi, L., Dini, D., Giacopini, M., Fowell, M. T., & Baldini, A. (2013). Fluid film lubrication in the presence of cavitation: A mass-conserving two-dimensional formulation for compressible, piezoviscous and non-Newtonian fluidsbaya. Tribology International, 67, 61–71. ISSN 0301-679X.  https://doi.org/10.1016/j.triboint.2013.05.018.CrossRefGoogle Scholar
  17. Bolander, N. W., Steenwyk, B. D., Sadeghi, F., & Gerber, G. R. (2005). Lubrication regime transitions at the piston ring-cylinder liner interface. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 219(1), 19–31.  https://doi.org/10.1243/135065005X9664.CrossRefGoogle Scholar
  18. Boukrouche, M., & Bayada, G. (1993). Mathematical model. Existence and uniqueness of cavitation problems in porous journal bearing. Nonlinear Analysis: Theory, Methods & Applications, 20(8), 895–920.  https://doi.org/10.1016/0362-546X(93)90084-6.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Buresti, G. (2015). A note on stokes’ hypothesis. Acta Mechanica, 226(10), 3555–3559. ISSN 1619-6937.  https://doi.org/10.1007/s00707-015-1380-9.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Cottle, R. W., Pang, J. S., & Stone, R. E. (2009). The linear complementarity problem. Report No. 60. Philadelphia, PA: SIAM.Google Scholar
  21. Dowson, D., & Higginson, G. R. (1966). Elasto-hydrodynamic lubrication: The fundamentals of roller or gear lubrication. Oxford: Pergamon Press.Google Scholar
  22. Elrod, H. G. (1981). A cavitation algorithm. Journal of Tribology, 103, 350–354.Google Scholar
  23. Elrod, H. G., & Adams, M. L. (1975). A computer program for cavitation and starvation problems. In D. Dowson, M. Godet, & C. M. Taylor (Eds.), Cavitation and related phenomena in lubrication (pp. 37–43). London: Mechanical Engineering Publications.Google Scholar
  24. Evans, H. P., Elcoate, C. D., Hughes, T. G., & Snidle, R. W. (2001). Transient elastohydrodynamic analysis of rough surfaces using a novel coupled differential deflection method. Proceedings of the Institution of Mechanical Engineers Part J, 215, 319–337.CrossRefGoogle Scholar
  25. Evans, L. C. (2010). Graduate studies in mathematics providence. In Partial differential equations (2nd ed., Vol. 19). Rhode Island: American Mathematical Society.Google Scholar
  26. Fabricius, J., Koroleva, Y. O., & Wall, P. (2014). A rigorous derivation of the time-dependent reynolds equation. Asymptotic Analysis, 84, 103–121.MathSciNetzbMATHGoogle Scholar
  27. Floberg, L. (1960). The two-groove journal bearing, considering cavitation. Technical Report 231, Institute of Machine Elements, Chalmers University of Technology, Gothenburg, Sweden.Google Scholar
  28. Floberg, L. (1961). Lubrication of two cylinder surfaces, considering cavitation. Technical Report 232, Institute of Machine Elements, Chalmers University of Technology, Gothenburg, Sweden.Google Scholar
  29. Fowell, M., Olver, A. V., Gosman, A. D., Spikes, H. A., & Pegg, I. (2007). Entrainment and inlet suction: Two mechanisms of hydrodynamic lubrication in textured bearings. Journal of Tribology, 129(2), 336–347.  https://doi.org/10.1115/1.2540089.CrossRefGoogle Scholar
  30. Giacopini, M., Fowell, M. T., Dini, D., & Strozzi, A. (2010). A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation. Journal of Tribology, 132(4), 041702.  https://doi.org/10.1115/1.4002215.CrossRefGoogle Scholar
  31. Greenwood, J. A., & Tripp, J. H. (1970). The contact of two nominally flat rough surfaces. Proceedings of the Institution of Mechanical Engineers, 185(48), 625–633. ISSN 0020-3483.Google Scholar
  32. Gustafsson, I., Rajagopal, K. R., Stenberg, R., & Videman, J. (2015). Nonlinear Reynolds equation for hydrodynamic lubrication. Applied Mathematical Modelling, 39(17), 5299–5309. ISSN 0307-904X.  https://doi.org/10.1016/j.apm.2015.03.028.MathSciNetCrossRefGoogle Scholar
  33. Habchi, W. (2018). Finite element modeling of elastohydrodynamic lubrication problems.  https://doi.org/10.1002/9781119225133.zbMATHCrossRefGoogle Scholar
  34. Habchi, W. (2019). A schur-complement model-order-reduction technique for the finite element solution of transient elastohydrodynamic lubrication problems. Advances in Engineering Software, 127, 28–37.  https://doi.org/10.1016/j.advengsoft.2018.10.007.CrossRefGoogle Scholar
  35. Holmes, M. A. J. (2002). Transient analysis of the point contact elastohydrodynamic lubrication problem using coupled solution methods. Ph.D. thesis, Cardiff University.Google Scholar
  36. Holmes, M. J. A., Evans, H. P., Hughes, T. G., & Snidle, R. W. (2003a). Transient elastohydrodynamic point contact analysis using a new coupled differential deflection method part 1: Theory and validation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 217(4), 289–304.  https://doi.org/10.1243/135065003768618641.CrossRefGoogle Scholar
  37. Holmes, M. J. A., Evans, H. P., Hughes, T. G., & Snidle, R. W. (2003b). Transient elastohydrodynamic point contact analysis using a new coupled differential deflection method part 2: Results. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 217(4), 305–322.  https://doi.org/10.1243/135065003768618650.CrossRefGoogle Scholar
  38. Hooke, C. J., & Li, K. Y. (2006). Rapid calculation of the pressures and clearances in rough, elastohydrodynamically lubricated contacts under pure rolling. part 1: Low amplitude, sinusoidal roughness. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(6), 901–913.  https://doi.org/10.1243/09544062C03405.Google Scholar
  39. Jakobsson, B., & Floberg, L. (1957). The finite journal bearing, considering vaporization. Technical Report 190, Institute of Machine Elements, Chalmers University of Technology, Gothenburg, Sweden.Google Scholar
  40. Liu, S., Wang, Q., & Liu, G. (2000). A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear, 243(1–2), 101–111. ISSN 0043-1648.  https://doi.org/10.1016/S0043-1648(00)00427-0.CrossRefGoogle Scholar
  41. Liu, S., Hua, D., Chen, W. W., & Wang, Q. J. (2007). Tribological modeling: Application of fast Fourier transform. Tribology International, 40(8), 1284–1293. ISSN 0301-679X.  https://doi.org/10.1016/j.triboint.2007.02.004.CrossRefGoogle Scholar
  42. Lukkassen, D., Meidell, A., & Wall, P. (2009). Homogenization of some variational problems connected to the theory of lubrication. International Journal of Engineering Science, 47(1), 153–162.MathSciNetzbMATHCrossRefGoogle Scholar
  43. Lukkassen, D., Nguetseng, G., & Wall, P. (2002). Two-scale convergence. International Journal of Pure and Applied Mathematics, 2(1), 33–81.MathSciNetzbMATHGoogle Scholar
  44. Olsson, K. O. (1965). Cavitation in dynamically loaded bearings. Technical Report 308, Institute of Machine Elements, Chalmers University of Technology, Gothenburg, Sweden.Google Scholar
  45. Olver, A. V., Fowell, M. T., Spikes, H. A., & Pegg, I. G. (2006). ‘inlet suction’, a load support mechanism in non-convergent, pocketed, hydrodynamic bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 220(2), 105–108. 10.1243/13506501JET168.  https://doi.org/10.1243/13506501JET168.CrossRefGoogle Scholar
  46. Patir, N. (1978). A numerical procedure for random generation of rough surfaces. Wear, 47(2), 263–277. ISSN 0043-1648.  https://doi.org/10.1016/0043-1648(78)90157-6.CrossRefGoogle Scholar
  47. Patir, N., & Cheng, H. S. (1978). An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. Journal of Tribology, Transactions of the ASME, 100, 12–17.Google Scholar
  48. Patir, N., & Cheng, H. S. (1979). Application of average flow model to lubrication between rough sliding surfaces. Journal of Tribology, Transactions of the ASME, 101, 220–230.Google Scholar
  49. Pérez-Ràfols, E., & Almqvist, A. (2019). Generating randomly rough surfaces with given height probability distribution and power spectrum. Tribology International, 131, 591–604. ISSN 0301-679X.  https://doi.org/10.1016/j.triboint.2018.11.020.CrossRefGoogle Scholar
  50. Pérez-Ràfols, E., Larsson, R., Lundström, T. S., Wall, P., & Almqvist, A. (2016). A stochastic two-scale model for pressure-driven flow between rough surfaces. Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences, 472(2190), 20160069.  https://doi.org/10.1098/rspa.2016.0069.MathSciNetzbMATHCrossRefGoogle Scholar
  51. Persson, B. N. J. (2010). Fluid dynamics at the interface between contacting elastic solids with randomly rough surfaces. Journal of Physics Condensed Matter, 22(26).  https://doi.org/10.1088/0953-8984/22/26/265004.Google Scholar
  52. Rajagopal, K. R., & Szeri, A. Z. (2003). On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459, 2771–2786.Google Scholar
  53. Reynolds, O. (1886). On the theory of lubrication and its application to Mr. Beauchamps tower’s experiments, including an experimental determination of the viscosity of olive oil. Philosophical Transactions of the Royal Society of London A, 177, 157–234.Google Scholar
  54. Rodhe, S. M., Whitaker, K. W., & McAllister, G. T. (1980). A mixed friction model for dynamically loaded contacts with application to piston ring lubrication. In Surface roughness effects in hydrodynamic and mixed lubrication. ASME Winter Annual Meeting, Chicago (pp. 19–50).Google Scholar
  55. Sahlin, F., Almqvist, A., Larsson, R., & Glavatskih, S. (2007). A cavitation algorithm for arbitrary lubricant compressibility. Tribology International, 40(8), 1294–1300. ISSN 0301-679X.  https://doi.org/10.1016/j.triboint.2007.02.009.CrossRefGoogle Scholar
  56. Sahlin, F., Larsson, R., Marklund, P., Lugt, P. M., & Almqvist, A. (2010a). A mixed lubrication model incorporating measured surface topography. part 1: theory of flow factors. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 224(4), 335–351.  https://doi.org/10.1243/13506501JET658.CrossRefGoogle Scholar
  57. Sahlin, F., Larsson, R., Marklund, P., Lugt, P. M., & Almqvist, A. (2010b). A mixed lubrication model incorporating measured surface topography. Part 2: Roughness treatment, model validation, and simulation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 224(4), 353–365.  https://doi.org/10.1243/13506501JET659.CrossRefGoogle Scholar
  58. Scaraggi, M., & Carbone, G. (2012). A two-scale approach for lubricated soft-contact modeling: An application to lip-seal geometry. Advances in Tribology.  https://doi.org/10.1155/2012/412190.CrossRefGoogle Scholar
  59. Shirzadegan, M., Almqvist, A., & Larsson, R. (2016). Fully coupled ehl model for simulation of finite length line cam-roller follower contacts. Tribology International, 103, 584–598.  https://doi.org/10.1016/j.triboint.2016.08.017.CrossRefGoogle Scholar
  60. Söderfjäll, M. (2017). Friction in piston ring—Cylinder liner contacts. Ph.D. thesis, Luleå University of Technology, Machine Elements.Google Scholar
  61. Tian, X., & Bhushan, B. (1996). A numerical three-dimensional model for the contact of rough surfaces by variational principle. Journal of Tribology, 118(1), 33–42. ISSN 07424787.  https://doi.org/10.1115/1.2837089.CrossRefGoogle Scholar
  62. Venner, C. H., & Lubrecht, A. A. (2000). Multilevel methods in lubrication. Tribology Series,37.Google Scholar
  63. Vijayaraghavan, D., & Keith Jr, T. G. (1989). Development and evaluation of a cavitation algorithm. STLE Tribology Transactions, 32(2), 225–233.Google Scholar
  64. Vijayaraghavan, D., & Keith Jr, T. G. (1990). An efficient, robust, and time accurate numerical scheme applied to a cavitation algorithm. Journal of Tribology, Transactions of the ASME, 112(1), 44–51. ISSN 0742–4787.Google Scholar
  65. Wall, P. (2007). Homogenization of Reynolds equation by two-scale convergence. Chinese Annals of Mathematics—Series B, 28(3), 363–374.MathSciNetzbMATHCrossRefGoogle Scholar
  66. Wang, W. Z., Wang, H., Liu, Y. C., Hu, Y. Z., & Zhu, D. (2003). A comparative study of the methods for calculation of surface elastic deformation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 217(2), 145–154. ISSN 1350-6501.  https://doi.org/10.1243/13506500360603570.CrossRefGoogle Scholar
  67. Woods, C. M., & Brewe, D. E. (1989). The solution of the Elrod algorithm for a dynamically loaded journal bearing using multigrid techniques. Journal of Tribology, 111(2), 302–308.Google Scholar
  68. Zhu, D., Liu, Y., & Wang, Q. (2015). On the numerical accuracy of rough surface ehl solution. Tribology and Lubrication Technology, 71(1), 40–55.  https://doi.org/10.1080/10402004.2014.886349.CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2020

Authors and Affiliations

  1. 1.Luleå University of TechnologyLuleåSweden

Personalised recommendations