Advertisement

New Results on Reversible Boolean Functions Having Component Functions with Specified Properties

  • Paweł KerntopfEmail author
  • Krzysztof Podlaski
  • Claudio Moraga
  • Radomir Stanković
Chapter

Abstract

In the traditional logic synthesis different classifications of non-reversible Boolean functions have found many applications. Recently, some attempts to deal with classifications of reversible functions have been published. In this paper, solutions of two problems which have not been addressed yet are presented. The solutions were found by extrapolation of cycle structures for 3-and 4-variable reversible functions obtained in the course of enumerative computations.

Keywords

Reversible functions Component functions Classification 

Notes

Acknowledgements

The authors acknowledge partial support of COST Action IC1405 on “Reversible Computation - Extending Horizons of Computing.”

References

  1. 1.
    de Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Applications. Wiley, Weinheim (2010)CrossRefGoogle Scholar
  2. 2.
    Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits: a survey. ACM Comput. Surv. 45(2), 21 (2013)CrossRefGoogle Scholar
  3. 3.
    Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of large Boolean functions for reversible logic. J. Emerg. Technol. Comput. Syst. 12(4), 41 (2015).; also available as preprint arXiv.org:1408.3586, August 15, 2014CrossRefGoogle Scholar
  4. 4.
    Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 398–472. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  5. 5.
    Tokareva, N.: Bent Functions. Results and Applications to Cryptography. Academic Press, London (2015)zbMATHGoogle Scholar
  6. 6.
    Kerntopf, P., Moraga, C., Podlaski, K., Stanković, R.S.: Towards classification of reversible functions. In: Steinbach, B. (ed.) Proceedings of the 12th International Workshop on Boolean Problems, pp. 21–28 (2016)Google Scholar
  7. 7.
    Kerntopf, P., Moraga, C., Podlaski, K., Stanković, R.S.: Towards classification of reversible functions with homogeneous component functions. In: Steinbach, B. (ed.) Further Improvements in the Boolean Domain, pp. 386–406. Cambridge Scholars Publishing, Newcastle upon Tyne (2018)Google Scholar
  8. 8.
    Kerntopf, P., Podlaski, K., Moraga, C., Stanković, R.S.: Study of reversible ternary functions with homogeneous component functions. In: Proceedings of the 47th IEEE International Conference on Multiple-Valued Logic, pp. 191–196 (2017)Google Scholar
  9. 9.
    Kerntopf, P., Stanković, R.S., Podlaski, K., Moraga, C.: Ternary/MV reversible functions with component functions from different equivalence classes. In: Proceedings of the 48th IEEE International Conference on Multiple-Valued Logic, pp. 109–114 (2018)Google Scholar
  10. 10.
    Tsai, C.-C., Marek-Sadowska, M.: Boolean functions classification via fixed polarity Reed-Muller forms. IEEE Trans. Comput. 46(2), 173–186 (1997)CrossRefGoogle Scholar
  11. 11.
    Debnath, D., Sasao, T.: Fast Boolean matching under variable permutation using representative. In: Proceedings of the Asia and South Pacific Design Automation Conference, pp. 359–362 (1999)Google Scholar
  12. 12.
    Debnath, D., Sasao, T.: Efficient computation of canonical form for Boolean matching in large libraries. In: Proceedings of the Asia and South Pacific Design Automation Conference, pp. 591–596 (2004)Google Scholar
  13. 13.
    Debnath, D., Sasao, T.: Fast Boolean matching under permutation by efficient computation of canonical form. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87-A, 3134–3140 (2004)Google Scholar
  14. 14.
    Debnath, D., Sasao, T.: Efficient computation of canonical form under variable permutation and negation for Boolean matching in large libraries. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89-A(12), 3443–3450 (2006, Special Section on VLSI Design and CAD Algorithms)CrossRefGoogle Scholar
  15. 15.
    Stanković, R.S., Astola, J.T., Steinbach, B.: Former and recent work in classification of switching functions. In: Steinbach, B. (ed.) Proceedings of the 8th International Workshop on Boolean Problems, pp. 115–126 (2008)Google Scholar
  16. 16.
    Lorens, C.S.: Invertible Boolean Functions. Space-General Corp, El Monte (1962)zbMATHGoogle Scholar
  17. 17.
    Lorens, C.S.: Invertible Boolean functions. IEEE Trans. Electron. Comput. EC-13(5), 529–541 (1964)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Harrison, M.A.: The number of classes of invertible Boolean functions. J. ACM. 10, 25–28 (1963)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Strazdins, I.E.: On the number of types of invertible binary networks. Avtomatika Vychislitelnaya Tekhnika. 1, 30–34 (1974)MathSciNetGoogle Scholar
  20. 20.
    Primenko, E.A.: Invertible Boolean functions and fundamental groups of transformations of algebras of Boolean functions. Avtomatika Vychislitelnaya Tekhnika. 3, 17–21 (1976)MathSciNetGoogle Scholar
  21. 21.
    Primenko, E.A.: On the number of types of invertible Boolean functions. Avtomatika Vychislitelnaya Tekhnika. 6, 12–14 (1977)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Primenko, E.A.: On the number of types of invertible transformations in multivalued logic. Kibernetika. 5, 27–29 (1977)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Primenko, E.A.: Equivalence classes of invertible Boolean functions. Kibernetika. 6, 1–5 (1984)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Rice, J.E.: Considerations for determining a classification scheme for reversible Boolean functions. Technical report TR-CSJR2–2007, University of Lethbridge, Lethbridge (2007)Google Scholar
  25. 25.
    Soeken, M., Abdessaied, N., de Micheli, G.: Enumeration of reversible functions and its application to circuit complexity. In: Devitt, S., Lanese, I. (eds.) Reversible Computation. Proceedings of the 8th International Conference, RC 2016, Bologna, Italy, July 7–8, 2016, Lecture Notes in Computer Science, vol. 9720, pp. 255–270, Springer, Cham (2016)CrossRefGoogle Scholar
  26. 26.
    Draper, T.G.: Nonlinear complexity of Boolean permutations. PhD thesis, University of Maryland, College Park (2009)Google Scholar
  27. 27.
    Aaronson, S., Grier, D., Schaeffer, L.: The classification of reversible bit operations. Preprint arXiv:1504.05155 [quant-ph], 68 p. (2015)Google Scholar
  28. 28.
    Carić, M., Živković, M.: On the number of equivalence classes of invertible Boolean functions under action of permutation of variables on domain and range. Publications de l’Institut Mathématique. 100(114), 95–99 (2016)., also available as preprint arXiv:1603.04386v2 [math.CO], 9 pages, April 6, 2016MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jegier, J., Kerntopf, P., Szyprowski, M.: An approach to constructing reversible multi-qubit benchmarks with provably minimal implementations. In: Proceedings of the 13th IEEE International Conference on Nanotechnology, pp. 99–104 (2013)Google Scholar
  30. 30.
    Jegier, J., Kerntopf, P.: Progress towards constructing sequences of benchmarks for quantum Boolean circuits synthesis. In: Proceedings of the 14th IEEE International Conference on Nanotechnology, pp. 250–255 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Paweł Kerntopf
    • 1
    Email author
  • Krzysztof Podlaski
    • 2
  • Claudio Moraga
    • 3
  • Radomir Stanković
    • 4
  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland
  2. 2.Faculty of Physics and Applied InformaticsUniversity of ŁódźŁódźPoland
  3. 3.Faculty of Computer ScienceTechnical University of DortmundDortmundGermany
  4. 4.Department of Computer Science, Faculty of Electronic EngineeringUniversity of NišNišSerbia

Personalised recommendations