Advertisement

Chemotherapy and Inflammatory Cytokine Signalling in Cancer Cells and the Tumour Microenvironment

  • Derek W. Edwardson
  • Amadeo M. ParissentiEmail author
  • A. Thomas Kovala
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1152)

Abstract

Cancer is the result of a cell’s acquisition of a variety of biological capabilities or ‘hallmarks’ as outlined by Hanahan and Weinberg. These include sustained proliferative signalling, the ability to evade growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and the ability to invade other tissue and metastasize. More recently, the ability to escape immune destruction has been recognized as another important hallmark of tumours. It is suggested that genome instability and inflammation accelerates the acquisition of a variety of the above hallmarks. Inflammation, is a product of the body’s response to tissue damage or pathogen invasion. It is required for tissue repair and host defense, but prolonged inflammation can often be the cause for disease. In a cancer patient, it is often unclear whether inflammation plays a protective or deleterious role in disease progression. Chemotherapy drugs can suppress tumour growth but also induce pathways in tumour cells that have been shown experimentally to support tumour progression or, in other cases, encourage an anti-tumour immune response. Thus, with the goal of better understanding the context under which each of these possible outcomes occurs, recent progress exploring chemotherapy-induced inflammatory cytokine production and the effects of cytokines on drug efficacy in the tumour microenvironment will be reviewed. The implications of chemotherapy on host and tumour cytokine pathways and their effect on the treatment of cancer patients will also be discussed.

Keywords

Chemotherapy response Induction Cytokines Tumour microenvironment Response biomarkers Drug resistance 

Notes

Source of Funding

Supported by a grant (to A.M.P.) from the Northern Cancer Foundation and a NOSM/NOSMFA Research Development Grant (to A.T.K.).

References

  1. 1.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899.  https://doi.org/10.1016/j.cell.2010.01.025PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771.  https://doi.org/10.1038/nrc3611CrossRefGoogle Scholar
  3. 3.
    Shalapour S, Karin M (2015) Immunity, inflammation, and cancer: an eternal fight between good and evil. J Clin Invest 125(9):3347–3355.  https://doi.org/10.1172/JCI80007PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Crusz SM, Balkwill FR (2015) Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12(10):584–596.  https://doi.org/10.1038/nrclinonc.2015.105PubMedCrossRefGoogle Scholar
  5. 5.
    Showalter A, Limaye A, Oyer JL, Igarashi R, Kittipatarin C, Copik AJ, Khaled AR (2017) Cytokines in immunogenic cell death: applications for cancer immunotherapy. Cytokine 97:123–132.  https://doi.org/10.1016/j.cyto.2017.05.024PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta – Mol Cell Res 1843(11):2563–2582.  https://doi.org/10.1016/j.bbamcr.2014.05.014CrossRefGoogle Scholar
  7. 7.
    Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O’Mahony L, Palomares O, Rhyner C, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA (2011) Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127(3):701–721.e770.  https://doi.org/10.1016/j.jaci.2010.11.050CrossRefPubMedGoogle Scholar
  8. 8.
    Akdis M, Aab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, Duan S, Eiwegger T, Eljaszewicz A, Ferstl R, Frei R, Garbani M, Globinska A, Hess L, Huitema C, Kubo T, Komlosi Z, Konieczna P, Kovacs N, Kucuksezer UC, Meyer N, Morita H, Olzhausen J, O’Mahony L, Pezer M, Prati M, Rebane A, Rhyner C, Rinaldi A, Sokolowska M, Stanic B, Sugita K, Treis A, van de Veen W, Wanke K, Wawrzyniak M, Wawrzyniak P, Wirz OF, Zakzuk JS, Akdis CA (2016) Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J Allergy Clin Immunol 138(4):984–1010.  https://doi.org/10.1016/j.jaci.2016.06.033PubMedCrossRefGoogle Scholar
  9. 9.
    Pestka S (2007) The interferons: 50 years after their discovery, there is much more to learn. J Biol Chem 282(28):20047–20051.  https://doi.org/10.1074/jbc.R700004200PubMedCrossRefGoogle Scholar
  10. 10.
    Croft M, Duan W, Choi H, Eun SY, Madireddi S, Mehta A (2012) TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol 33(3):144–152.  https://doi.org/10.1016/j.it.2011.10.004PubMedCrossRefGoogle Scholar
  11. 11.
    Weiss A, Attisano L (2013) The TGFbeta superfamily signaling pathway. WIRES Dev Biol 2(1):47–63.  https://doi.org/10.1002/wdev.86CrossRefGoogle Scholar
  12. 12.
    Mukaida N, Sasaki S-i, Baba T (2014) Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment. Mediat Inflamm 2014:15.  https://doi.org/10.1155/2014/170381CrossRefGoogle Scholar
  13. 13.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  14. 14.
    Goldberg JE, Schwertfeger KL (2010) Proinflammatory cytokines in breast cancer: mechanisms of action and potential targets for therapeutics. Curr Drug Targets 11(9):1133–1146PubMedCrossRefGoogle Scholar
  15. 15.
    Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121(10):3804–3809.  https://doi.org/10.1172/JCI57099PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chin AR, Wang SE (2014) Cytokines driving breast cancer stemness. Mol Cell Endocrinol 382(1):598–602.  https://doi.org/10.1016/j.mce.2013.03.024PubMedCrossRefGoogle Scholar
  17. 17.
    Palacios-Arreola MI, Nava-Castro KE, Castro JI, Garcia-Zepeda E, Carrero JC, Morales-Montor J (2014) The role of chemokines in breast cancer pathology and its possible use as therapeutic targets. J Immunol Res 2014:8.  https://doi.org/10.1155/2014/849720CrossRefGoogle Scholar
  18. 18.
    Esquivel-Velazquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J (2015) The role of cytokines in breast cancer development and progression. J Interf Cytokine Res 35(1):1–16.  https://doi.org/10.1089/jir.2014.0026CrossRefGoogle Scholar
  19. 19.
    Horwitz SB, Lothstein L, Manfredi JJ, Mellado W, Parness J, Roy SN, Schiff PB, Sorbara L, Zeheb R (1986) Taxol: mechanisms of action and resistance. Ann N Y Acad Sci 466:733–744.  https://doi.org/10.1111/j.1749-6632.1986.tb38455.xPubMedCrossRefGoogle Scholar
  20. 20.
    Edwardson D, Chewchuk S, Parissenti AM (2013) Resistance to anthracyclines and taxanes in breast cancer. In: Ahmad A (ed) Breast cancer metastasis and drug resistance. Springer New York, New York, pp 227–247.  https://doi.org/10.1007/978-1-4614-5647-6_13CrossRefGoogle Scholar
  21. 21.
    Edwardson DW, Narendrula R, Chewchuk S, Mispel-Beyer K, Mapletoft JPJ, Parissenti AM (2015) Role of drug metabolism in the cytotoxicity and clinical efficacy of anthracyclines. Curr Drug Metab 16(6):412–426PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bogdan C, Ding A (1992) Taxol, a microtubule-stabilizing antineoplastic agent, induces expression of tumor necrosis factor alpha and interleukin-1 in macrophages. J Leukoc Biol 52(1):119–121PubMedCrossRefGoogle Scholar
  23. 23.
    Burkhart CA, Berman JW, Swindell CS, Horwitz SB (1994) Relationship between the structure of taxol and other taxanes on induction of tumor necrosis factor-alpha gene expression and cytotoxicity. Cancer Res 54(22):5779–5782PubMedGoogle Scholar
  24. 24.
    Jones VS, Huang RY, Chen LP, Chen ZS, Fu L, Huang RP (2016) Cytokines in cancer drug resistance: cues to new therapeutic strategies. Biochim Biophys Acta 1865(2):255–265.  https://doi.org/10.1016/j.bbcan.2016.03.005PubMedCrossRefGoogle Scholar
  25. 25.
    Sedgwick JD, Riminton DS, Cyster JG, Korner H (2000) Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today 21(3):110–113.  https://doi.org/10.1016/S0167-5699(99)01573-XPubMedCrossRefGoogle Scholar
  26. 26.
    Sprowl J, Reed K, Armstrong S, Lanner C, Guo B, Kalatskaya I, Stein L, Hembruff S, Tam A, Parissenti A (2012) Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: a study in isogenic resistant tumor cells. Breast Cancer Res 14(1):R2PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Edwardson DW, Boudreau J, Mapletoft J, Lanner C, Kovala AT, Parissenti AM (2017) Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance. PLoS One 12(9):e0183662PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Berkova N, Page M (1995) Addition of hTNFα potentiates cytotoxicity of taxol in human ovarian cancer lines. Anticancer Res 15(3):863–866PubMedGoogle Scholar
  29. 29.
    Li B, Vincent A, Cates J, Brantley-Sieders DM, Polk DB, Young PP (2009) Low levels of tumor necrosis factor alpha increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res 69(1):338–348.  https://doi.org/10.1158/0008-5472.CAN-08-1565PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ardestani S, Li B, Deskins DL, Wu H, Massion PP, Young PP (2013) Membrane versus soluble isoforms of TNF-a exert opposing effects on tumor growth and survival of tumor-associated myeloid cells. Cancer Res 73(13):3938–3950.  https://doi.org/10.1158/0008-5472.CAN-13-0002PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hu G, Chong RA, Yang Q, Wei Y, Blanco MA, Li F, Reiss M, Au JLS, Haffty BG, Kang Y (2009) MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 15(1):9–20.  https://doi.org/10.1016/j.ccr.2008.11.013PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Morris PG, McArthur HL, Hudis CA (2009) Therapeutic options for metastatic breast cancer. Expert Opin Pharmacother 10(6):967–981.  https://doi.org/10.1517/14656560902834961PubMedCrossRefGoogle Scholar
  33. 33.
    Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massague J (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178.  https://doi.org/10.1016/j.cell.2012.04.042PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Modur V, Zimmerman GA, Prescott SM, McIntyre TM (1996) Endothelial cell inflammatory responses to tumor necrosis factor alpha. Ceramide-dependent and -independent mitogen-activated protein kinase cascades. J Biol Chem 271(22):13094–13102.  https://doi.org/10.1074/JBC.271.22.13094PubMedCrossRefGoogle Scholar
  35. 35.
    Merritt WM, Lin YG, Spannuth WA, Fletcher MS, Kamat AA, Han LY, Landen CN, Jennings N, De Geest K, Langley RR, Villares G, Sanguino A, Lutgendorf SK, Lopez-Berestein G, Bar-Eli MM, Sood AK (2008) Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst 100(5):359–372.  https://doi.org/10.1093/jnci/djn024PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385(6618):729–733.  https://doi.org/10.1038/385729a0CrossRefPubMedGoogle Scholar
  37. 37.
    Shedden K, Taylor JMG, Enkemann SA, Tsao M-S, Yeatman TJ, Gerald WL, Eschrich S, Jurisica I, Giordano TJ, Misek DE, Chang AC, Zhu CQ, Strumpf D, Hanash S, Shepherd FA, Ding K, Seymour L, Naoki K, Pennell N, Weir B, Verhaak R, Ladd-Acosta C, Golub T, Gruidl M, Sharma A, Szoke J, Zakowski M, Rusch V, Kris M, Viale A, Motoi N, Travis W, Conley B, Seshan VE, Meyerson M, Kuick R, Dobbin KK, Lively T, Jacobson JW, Beer DG (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14(8):822–827.  https://doi.org/10.1038/nm.1790PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, Mariette C, Chaput N, Mira JP, Delaloge S, André F, Tursz T, Kroemer G, Zitvogel L (2007) The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 220:47–59.  https://doi.org/10.1111/j.1600-065X.2007.00573.xPubMedCrossRefGoogle Scholar
  39. 39.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri M, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat F, Saftig P, Levi F, Lidereau R, Nogues C, Mira J, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059.  https://doi.org/10.1038/nm1622CrossRefPubMedGoogle Scholar
  40. 40.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini J-L, Castedo M, Mignot G, Panaretakis T, Casares N, Métivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61.  https://doi.org/10.1038/nm1523PubMedCrossRefGoogle Scholar
  41. 41.
    Obeid M, Panaretakis T, Tesniere A, Joza N, Tufi R, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G (2007) Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “Silent” to immunogenic. Cancer Res 67(17):7941–7944.  https://doi.org/10.1158/0008-5472.can-07-1622PubMedCrossRefGoogle Scholar
  42. 42.
    Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, Portela Catani JP, Hannani D, Duret H, Steegh K, Martins I, Schlemmer F, Michaud M, Kepp O, Sukkurwala AQ, Menger L, Vacchelli E, Droin N, Galluzzi L, Krzysiek R, Gordon S, Taylor PR, Van Endert P, Solary E, Smyth MJ, Zitvogel L, Kroemer G (2013) Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38(4):729–741.  https://doi.org/10.1016/j.immuni.2013.03.003PubMedCrossRefGoogle Scholar
  43. 43.
    Kepp O, Tesniere A, Schlemmer F, Michaud M, Senovilla L, Zitvogel L, Kroemer G (2009) Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis 14(4):364–375.  https://doi.org/10.1007/s10495-008-0303-9PubMedCrossRefGoogle Scholar
  44. 44.
    Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12(4):375–391PubMedCrossRefGoogle Scholar
  45. 45.
    Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741.  https://doi.org/10.1158/1078-0432.CCR-07-4843PubMedCrossRefGoogle Scholar
  46. 46.
    Tanaka T, Bai Z, Srinoulprasert Y, Yang B-G, Yang B, Hayasaka H, Miyasaka M (2005) Chemokines in tumor progression and metastasis. Cancer Sci 96(6):317–322.  https://doi.org/10.1111/j.1349-7006.2005.00059.xPubMedCrossRefGoogle Scholar
  47. 47.
    Wang Y, Qu Y, Niu XL, Sun WJ, Zhang XL, Li LZ (2011) Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine 56(2):365–375.  https://doi.org/10.1016/j.cyto.2011.06.005PubMedCrossRefGoogle Scholar
  48. 48.
    Walz A, Peveri P, Aschauer H, Baggiolini M (1987) Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun 149(2):755–761.  https://doi.org/10.1016/0006-291X(87)90432-3PubMedCrossRefGoogle Scholar
  49. 49.
    Schröder JM, Christophers E (1986) Identification of C5ades arg and an anionic neutrophil-activating peptide (ANAP) in psoriatic scales. J Invest Dermatol 87(1):53–58PubMedCrossRefGoogle Scholar
  50. 50.
    Matsushima K, Oppenheim JJ (1989) Interleukin 8 and MCAF: novel inflammatory cytokines inducible by IL 1 and TNF. Cytokine 1(1):2–13PubMedCrossRefGoogle Scholar
  51. 51.
    Roebuck KA (1999) Regulation of Interleukin-8 gene expression. J Interf Cytokine Res 19:429–438.  https://doi.org/10.1016/B978-012095440-7/50028-7CrossRefGoogle Scholar
  52. 52.
    Xu L, Fidler IJ (2000) Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncol Res 12(2):97–106PubMedCrossRefGoogle Scholar
  53. 53.
    Murdoch C, Monk PN, Finn A (1999) Cxc chemokine receptor expression on human endothelial cells. Cytokine 11(9):704–712.  https://doi.org/10.1006/cyto.1998.0465PubMedCrossRefGoogle Scholar
  54. 54.
    Lee L-F, Haskill JS, Mukaida N, Matsushima K, Ting JPY (1997) Identification of tumor-specific paclitaxel (Taxol)-responsive regulatory elements in the Interleukin-8 promoter. Mol Cell Biol 17(9):5097–5105PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lee LF, Schuerer-Maly CC, Lofquist AK, Van Haaften-Day C, Ting JPY, White CM, Martin BK, Haskill JS (1996) Taxol-dependent transcriptional activation of IL-8 expression in a subset of human ovarian cancer. Cancer Res 56(6):1303–1308PubMedGoogle Scholar
  56. 56.
    Collins TS, Lee LF, Ting JP (2000) Paclitaxel up-regulates interleukin-8 synthesis in human lung carcinoma through an NF-kappaB- and AP-1-dependent mechanism. Cancer Immunol Immunother 49(2):78–84PubMedCrossRefGoogle Scholar
  57. 57.
    Zhu YM, Webster SJ, Flower D, Woll PJ (2004) Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br J Cancer 91(11):1970–1976.  https://doi.org/10.1038/sj.bjc.6602227PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wang Y, Niu XL, Qu Y, Wu J, Zhu YQ, Sun WJ, Li LZ (2010) Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett 295(1):110–123.  https://doi.org/10.1016/j.canlet.2010.02.019CrossRefPubMedGoogle Scholar
  59. 59.
    Shi Z, Yang W-M, Chen L-P, Yang D-H, Zhou Q, Zhu J, Chen J-J, Huang R-C, Chen Z-S, Huang R-P (2012) Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production. Breast Cancer Res Treat 135(3):737–747.  https://doi.org/10.1007/s10549-012-2196-0PubMedCrossRefGoogle Scholar
  60. 60.
    Duan Z, Feller AJ, Penson RT, Chabner BA, Seiden MV (1999) Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res 5(11):3445–3453PubMedGoogle Scholar
  61. 61.
    Kassim SK, El-Salahy EM, Fayed ST, Helal SA, Helal T, EE-d A, Khalifa A (2004) Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clin Biochem 37(5):363–369.  https://doi.org/10.1016/j.clinbiochem.2004.01.014PubMedCrossRefGoogle Scholar
  62. 62.
    Herrera CA, Xu L, Bucana CD, Silva el VG, Hess KR, Gershenson DM, Fidler IJ (2002) Expression of metastasis-related genes in human epithelial ovarian tumors. Int J Oncol 20(1):5–13PubMedGoogle Scholar
  63. 63.
    Wilson C, Purcell C, Seaton A, Oladipo O, Maxwell PJ, O’Sullivan JM, Wilson RH, Johnston PG, Waugh DJJ (2008) Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-kappaB transcription and evasion of apoptosis. J Pharmacol Exp Ther 327(3):746–759.  https://doi.org/10.1124/jpet.108.143826PubMedCrossRefGoogle Scholar
  64. 64.
    Lee LF, Hellendall RP, Wang Y, Haskill JS, Mukaida N, Matsushima K, Ting JP (2000) IL-8 reduced tumorigenicity of human ovarian cancer in vivo due to neutrophil infiltration. J Immunol 164(5):2769–2775.  https://doi.org/10.4049/JIMMUNOL.164.5.2769PubMedCrossRefGoogle Scholar
  65. 65.
    Huang S, Mills L, Mian B, Tellez C, McCarty M, Yang XD, Gudas JM, Bar-Eli M (2002) Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 161(1):125–134.  https://doi.org/10.1016/S0002-9440(10)64164-8PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Penson RT, Kronish K, Duan Z, Feller AJ, Stark P, Cook SE, Duska LR, Fuller AF, Goodman AK, Nikrui N, MacNeill KM, Matulonis UA, Preffer FI, Seiden MV (2000) Cytokines IL-1beta, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFalpha in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel. Int J Gynecol Cancer 10(1):33–41PubMedCrossRefGoogle Scholar
  67. 67.
    Pusztai L, Mendoza TR, Reuben JM, Martinez MM, Willey JS, Lara J, Syed A, Fritsche HA, Bruera E, Booser D, Valero V, Arun B, Ibrahim N, Rivera E, Royce M, Cleeland CS, Hortobagyi GN (2004) Changes in plasma levels of inflammatory cytokines in response to paclitaxel chemotherapy. Cytokine 25(3):94–102.  https://doi.org/10.1016/j.cyto.2003.10.004PubMedCrossRefGoogle Scholar
  68. 68.
    Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16(5):448–457.  https://doi.org/10.1038/ni.3153PubMedCrossRefGoogle Scholar
  69. 69.
    Ghandadi M, Sahebkar A (2016) Interleukin-6: a critical cytokine in cancer multidrug resistance. Curr Pharm Des 22(5):518–526PubMedCrossRefGoogle Scholar
  70. 70.
    Kumari N, Dwarakanath BS, Das A, Bhatt AN (2016) Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol 37(9):11553–11572.  https://doi.org/10.1007/s13277-016-5098-7CrossRefGoogle Scholar
  71. 71.
    Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P, Rincón M (2001) Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res 61(24):8851–8858PubMedGoogle Scholar
  72. 72.
    Yan HQ, Huang XB, Ke SZ, Jiang YN, Zhang YH, Wang YN, Li J, Gao FG (2014) Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation. Cancer Sci 105(9):1220–1227.  https://doi.org/10.1111/cas.12478PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hartman ZC, Poage GM, Den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB, Brown PH (2013) Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res 73(11):3470–3480.  https://doi.org/10.1158/0008-5472.CAN-12-4524-TPubMedCrossRefGoogle Scholar
  74. 74.
    Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S, Quraishi AA, Tawakkol N, D’Angelo R, Paulson AK, Chung S, Luther T, Paholak HJ, Liu S, Hassan KA, Zen Q, Clouthier SG, Wicha MS (2012) Activation of an IL6 inflammatory loop mediates Trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 47(4):570–584.  https://doi.org/10.1016/j.molcel.2012.06.014PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Li G, Zhao L, Li W, Fan K, Qian W, Hou S, Wang H, Dai J, Wei H, Guo Y (2014) Feedback activation of STAT3 mediates trastuzumab resistance via upregulation of MUC1 and MUC4 expression. Oncotarget 5(18):8317–8329.  https://doi.org/10.18632/oncotarget.2135PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Yang Z, Guo L, Liu D, Sun L, Chen H, Deng Q, Liu Y, Yu M, Ma Y, Guo N, Shi M (2015) Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop. Oncotarget 6(7):5072–5087.  https://doi.org/10.18632/oncotarget.3241PubMedCrossRefGoogle Scholar
  77. 77.
    Rodriguez-Barrueco R, Yu J, Saucedo-Cuevas LP, Olivan M, Llobet-Navas D, Putcha P, Castro V, Murga-Penas EM, Collazo-Lorduy A, Castillo-Martin M, Alvarez M, Cordon-Cardo C, Kalinsky K, Maurer M, Califano A, Silva JM (2015) Inhibition of the autocrine IL-6–JAK2–STAT3–calprotectin axis as targeted therapy for HR-/HER2+ breast cancers. Genes Dev 29(15):1631–1648.  https://doi.org/10.1101/gad.262642.115PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Duan S, Tsai Y, Keng P, Chen Y, Ok Lee S, Chen Y (2015) IL-6 signaling contributes to cisplatin resistance in non-small cell lung cancer via the up-regulation of anti-apoptotic and DNA repair associated molecules. Oncotarget 6(29):27651–27660.  https://doi.org/10.18632/oncotarget.4753PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhu X, Shen H, Yin X, Long L, Chen X, Feng F, Liu Y, Zhao P, Xu Y, Li M, Xu W, Li Y (2017) IL-6R/STAT3/miR-204 feedback loop contributes to cisplatin resistance of epithelial ovarian cancer cells. Oncotarget 8(24):39154–39166.  https://doi.org/10.18632/oncotarget.16610PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Han X, Zhen S, Ye Z, Lu J, Wang L, Li P, Li J, Zheng X, Li H, Chen W, Li X, Zhao L (2017) A feedback loop between miR-30a/c-5p and DNMT1 mediates cisplatin resistance in ovarian cancer cells. Cell Physiol Biochem 41(3):973–986.  https://doi.org/10.1159/000460618PubMedCrossRefGoogle Scholar
  81. 81.
    De Mattos-Arruda L, Bottai G, Nuciforo PG, Di Tommaso L, Giovannetti E, Peg V, Losurdo A, Perez-Garcia J, Masci G, Corsi F, Cortes J, Seoane J, Calin GA, Santarpia L (2015) MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget 6(35):37269–37280.  https://doi.org/10.18632/oncotarget.5495PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wang Z-Y, Zhang J-A, Wu X-J, Liang Y-F, Lu Y-B, Gao Y-C, Dai Y-C, Yu S-Y, Jia Y, Fu X-X, Rao X, Xu J-F, Zhong J (2016) IL-6 inhibition reduces STAT3 activation and enhances the antitumor effect of carboplatin. Mediat Inflamm 2016:8.  https://doi.org/10.1155/2016/8026494CrossRefGoogle Scholar
  83. 83.
    Mochizuki D, Adams A, Warner KA, Zhang Z, Pearson AT, Misawa K, McLean SA, Wolf GT, Nor JE (2015) Anti-tumor effect of inhibition of IL-6 signaling in mucoepidermoid carcinoma. Oncotarget 6(26):22822–22835.  https://doi.org/10.18632/oncotarget.4477PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ara T, Nakata R, Sheard MA, Shimada H, Buettner R, Groshen SG, Ji L, Yu H, Jove R, Seeger RC, DeClerck YA (2013) Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma. Cancer Res 73(13):3852–3864.  https://doi.org/10.1158/0008-5472.CAN-12-2353PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Suchi K, Fujiwara H, Okamura S, Okamura H, Umehara S, Todo M, Furutani A, Yoneda M, Shiozaki A, Kubota T, Ichikawa D, Okamoto K, Otsuji E (2011) Overexpression of Interleukin-6 suppresses cisplatin-induced cytotoxicity in esophageal squamous cell carcinoma cells. Anticancer Res 31(1):67–75PubMedGoogle Scholar
  86. 86.
    Frassanito MA, Cusmai A, Iodice G, Dammacco F (2001) Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 97(2):483–489.  https://doi.org/10.1182/blood.V97.2.483PubMedCrossRefGoogle Scholar
  87. 87.
    De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, Gunzer M, Roers A, Hogg N (2013) Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121(24):4930–4937.  https://doi.org/10.1182/blood-2013-02-486217PubMedCrossRefGoogle Scholar
  88. 88.
    Bolitho C, Hahn MA, Baxter RC, Marsh DJ (2010) The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocr Relat Cancer 17(4):929–940.  https://doi.org/10.1677/ERC-10-0107PubMedCrossRefGoogle Scholar
  89. 89.
    Dhawan P, Richmond A (2002) Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 72(1):9–18PubMedPubMedCentralGoogle Scholar
  90. 90.
    Owen JD, Strieter R, Burdick M, Haghnegahdar H, Nanney L, Shattuck-Brandt R, Richmond A (1997) Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins. Int J Cancer 73(1):94–103PubMedCrossRefGoogle Scholar
  91. 91.
    Lebrun J-J (2012) The dual role of TGF in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol 2012:28.  https://doi.org/10.5402/2012/381428CrossRefGoogle Scholar
  92. 92.
    Huang S, Hölzel M, Knijnenburg T, Schlicker A, Roepman P, McDermott U, Garnett M, Grernrum W, Sun C, Prahallad A, Groenendijk FH, Mittempergher L, Nijkamp W, Neefjes J, Salazar R, Pt D, Uramoto H, Tanaka F, Beijersbergen RL, Wessels LFA, Bernards R (2012) MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell 151(5):937–950.  https://doi.org/10.1016/j.cell.2012.10.035PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Oshimori N, Oristian D, Fuchs E (2015) TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160(5):963–976.  https://doi.org/10.1016/j.cell.2015.01.043PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Li J, Ao J, Li K, Zhang J, Li Y, Zhang L, Wei Y, Gong D, Gao J, Tan W, Huang L, Liu L, Lin P, Wei Y (2016) ZNF32 contributes to the induction of multidrug resistance by regulating TGF-[beta] receptor 2 signaling in lung adenocarcinoma. Cell Death Dis 7:e2428.  https://doi.org/10.1038/cddis.2016.328PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Marín-Aguilera M, Codony-Servat J, Kalko SG, Fernández PL, Bermudo R, Buxo E, Ribal MJ, Gascón P, Mellado B (2012) Identification of docetaxel resistance genes in castration-resistant prostate cancer. Mol Cancer Ther 11(2):329–339.  https://doi.org/10.1158/1535-7163.mct-11-0289PubMedCrossRefGoogle Scholar
  96. 96.
    Shiota M, Kashiwagi E, Yokomizo A, Takeuchi A, Dejima T, Song Y, Tatsugami K, Inokuchi J, Uchiumi T, Naito S (2013) Interaction between docetaxel resistance and castration resistance in prostate cancer: implications of twist1, YB-1, and androgen receptor. Prostate 73(12):1336–1344.  https://doi.org/10.1002/pros.22681PubMedCrossRefGoogle Scholar
  97. 97.
    Yao Z, Fenoglio S, Gao DC, Camiolo M, Stiles B, Lindsted T, Schlederer M, Johns C, Altorki N, Mittal V, Kenner L, Sordella R (2010) TGF-β IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci U S A 107(35):15535–15540.  https://doi.org/10.1073/pnas.1009472107PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yamada D, Kobayashi S, Wada H, Kawamoto K, Marubashi S, Eguchi H, Ishii H, Nagano H, Doki Y, Mori M (2013) Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial mesenchymal transition and chemoresistance in biliary tract cancer. Eur J Cancer 49(7):1725–1740.  https://doi.org/10.1016/j.ejca.2012.12.002PubMedCrossRefGoogle Scholar
  99. 99.
    Chen M-F, Wang W-H, Lin P-Y, Lee K-D, Chen W-C (2012) Significance of the TGF-β1/IL-6 axis in oral cancer. Clin Sci 122(10):459–472.  https://doi.org/10.1042/cs20110434PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nakamura T, Shinriki S, Jono H, Guo J, Ueda M, Hayashi M, Yamashita S, Zijlstra A, Nakayama H, Hiraki A, Shinohara M, Ando Y (2015) Intrinsic TGF-β2-triggered SDF-1-CXCR4 signaling axis is crucial for drug resistance and a slow-cycling state in bone marrow-disseminated tumor cells. Oncotarget 6(2):1008–1019PubMedCrossRefGoogle Scholar
  101. 101.
    Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W (2016) CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 35(7):816–826.  https://doi.org/10.1038/onc.2015.139PubMedCrossRefGoogle Scholar
  102. 102.
    Weekes CD, Song D, Arcaroli J, Wilson LA, Rubio-Viqueira B, Cusatis G, Garrett-Mayer E, Messersmith WA, Winn RA, Hidalgo M (2012) Stromal cell-derived factor 1α mediates resistance to mTOR-directed therapy in pancreatic cancer. Neoplasia 14(8):690–701PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Jung MJ, Rho JK, Kim YM, Jung JE, Jin YB, Ko YG, Lee JS, Lee SJ, Lee JC, Park MJ (2013) Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene 32(2):209–221.  https://doi.org/10.1038/onc.2012.37PubMedCrossRefGoogle Scholar
  104. 104.
    Domanska UM, Timmer-Bosscha H, Nagengast WB, Oude Munnink TH, Kruizinga RC, Ananias HJ, Kliphuis NM, Huls G, De Vries EG, de Jong IJ, Walenkamp AM (2012) CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia 14(8):709–718PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bhardwaj A, Srivastava SK, Singh S, Arora S, Tyagi N, Andrews J, McClellan S, Carter JE, Singh AP (2014) CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1. Oncotarget 5(22):11490–11500.  https://doi.org/10.18632/oncotarget.2571PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sison EAR, McIntyre E, Magoon D, Brown P (2013) Dynamic chemotherapy-induced upregulation of CXCR4 expression: a mechanism of therapeutic resistance in pediatric AML. Mol Cancer Res 11(9):1004–1016.  https://doi.org/10.1158/1541-7786.mcr-13-0114PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Chen Z, Teo AE, McCarty N (2016) ROS-induced CXCR4 signaling regulates mantle cell lymphoma (MCL) cell survival and drug resistance in the bone marrow microenvironment via autophagy. Clin Cancer Res 22(1):187–199.  https://doi.org/10.1158/1078-0432.ccr-15-0987PubMedCrossRefGoogle Scholar
  108. 108.
    Beider K, Darash-Yahana M, Blaier O, Koren-Michowitz M, Abraham M, Wald H, Wald O, Galun E, Eizenberg O, Peled A, Nagler A (2014) Combination of imatinib with CXCR4 antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Mol Cancer Ther 13(5):1155–1169.  https://doi.org/10.1158/1535-7163.MCT-13-0410PubMedCrossRefGoogle Scholar
  109. 109.
    Barbieri F, Bajetto A, Thellung S, Würth R, Florio T (2016) Drug design strategies focusing on the CXCR4/CXCR7/CXCL12 pathway in leukemia and lymphoma. Expert Opin Drug Discov 11(11):1093–1109.  https://doi.org/10.1080/17460441.2016.1233176PubMedCrossRefGoogle Scholar
  110. 110.
    Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA, Oupicky D (2017) Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther.  https://doi.org/10.1016/j.pharmthera.2017.05.012CrossRefGoogle Scholar
  111. 111.
    Wang Z, Sun J, Feng Y, Tian X, Wang B, Zhou Y (2016) Oncogenic roles and drug target of CXCR4/CXCL12 axis in lung cancer and cancer stem cell. Tumor Biol 37(7):8515–8528.  https://doi.org/10.1007/s13277-016-5016-zCrossRefGoogle Scholar
  112. 112.
    Xu C, Zhao H, Chen H, Yao Q (2015) CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Dev Ther 9:4953–4964Google Scholar
  113. 113.
    Zhang J, Patel L, Pienta KJ (2010) Targeting chemokine (C-C motif) ligand 2 (CCL2) as an example of translation of cancer molecular biology to the clinic. Prog Mol Biol Transl Sci 95:31–53.  https://doi.org/10.1016/B978-0-12-385071-3.00003-4PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ (2016) Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 7(19):28697–28710.  https://doi.org/10.18632/oncotarget.7376PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267(2):271–285.  https://doi.org/10.1016/j.canlet.2008.03.018PubMedCrossRefGoogle Scholar
  116. 116.
    Velasco-Velazquez M, Xolalpa W, Pestell RG (2014) The potential to target CCL5/CCR5 in breast cancer. Expert Opin Ther Targets 18(11):1265–1275.  https://doi.org/10.1517/14728222.2014.949238PubMedCrossRefGoogle Scholar
  117. 117.
    Aldinucci D, Colombatti A (2014) The inflammatory chemokine CCL5 and cancer progression. Mediat Inflamm 2014:292376.  https://doi.org/10.1155/2014/292376CrossRefGoogle Scholar
  118. 118.
    Wang J, Zhuang ZG, Xu SF, He Q, Shao YG, Ji M, Yang L, Bao W (2015) Expression of CCL2 is significantly different in five breast cancer genotypes and predicts patient outcome. Int J Clin Exp Med 8(9):15684–15691PubMedPubMedCentralGoogle Scholar
  119. 119.
    Yao M, Yu E, Staggs V, Fan F, Cheng N (2016) Elevated expression of chemokine C-C ligand 2 in stroma is associated with recurrent basal-like breast cancers. Mod Pathol 29(8):810–823.  https://doi.org/10.1038/modpathol.2016.78PubMedCrossRefGoogle Scholar
  120. 120.
    Fang WB, Yao M, Brummer G, Acevedo D, Alhakamy N, Berkland C, Cheng N (2016) Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget 7(31):49349–49367.  https://doi.org/10.18632/oncotarget.9885PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Fang WB, Jokar I, Zou A, Lambert D, Dendukuri P, Cheng N (2012) CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. J Biol Chem 287(43):36593–36608.  https://doi.org/10.1074/jbc.M112.365999PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Fader AN, Rasool N, VaziriI SAJ, Kozuki T, Faber PW, Elson P, Biscotti CV, Michener CM, Rose PG, Rojas-Espaillat L, Belinson JL, Ganapathi MK, Ganapathi R (2010) CCL2 expression in primary ovarian carcinoma is correlated with chemotherapy response and survival outcomes. Anticancer Res 30(12):4791–4798PubMedGoogle Scholar
  123. 123.
    Moisan F, Francisco EB, Brozovic A, Duran GE, Wang YC, Chaturvedi S, Seetharam S, Snyder LA, Doshi P, Sikic BI (2014) Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers. Mol Oncol 8(7):1231–1239.  https://doi.org/10.1016/j.molonc.2014.03.016PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Roca H, Varsos Z, Pienta KJ (2008) CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 283(36):25057–25073.  https://doi.org/10.1074/jbc.M801073200PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Roca H, Varsos ZS, Pienta KJ (2009) CCL2 is a negative regulator of AMP-activated protein kinase to sustain mTOR complex-1 activation, survivin expression, and cell survival in human prostate cancer PC3 cells. Neoplasia 11(12):1309–1317.  https://doi.org/10.1593/neo.09936PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Macanas-Pirard P, Quezada T, Navarrete L, Broekhuizen R, Leisewitz A, Nervi B, Ramírez PA (2017) The CCL2/CCR2 axis affects transmigration and proliferation but not resistance to chemotherapy of acute myeloid leukemia cells. PLoS One 12(1):e0168888.  https://doi.org/10.1371/journal.pone.0168888PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Vergani E, Guardo LD, Dugo M, Rigoletto S, Tragni G, Ruggeri R, Perrone F, Tamborini E, Gloghini A, Arienti F, Vergani B, Deho P, Cecco LD, Vallacchi V, Frati P, Shahaj E, Villa A, Santinami M, Braud FD, Rivoltini L, Rodolfo M (2016) Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget 7(4):4428–4441PubMedCrossRefGoogle Scholar
  128. 128.
    Qian DZ, Rademacher BLS, Pittsenbarger J, Huang C-Y, Myrthue A, Higano CS, Garzotto M, Nelson PS, Beer TM (2010) CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel-induced cytotoxicity. Prostate 70(4):433–442.  https://doi.org/10.1002/pros.21077PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ji W-T, Chen H-R, Lin C-H, Lee J-W, Lee C-C (2014) Monocyte chemotactic protein 1 (MCP-1) modulates pro-survival signaling to promote progression of head and neck squamous cell carcinoma. PLoS One 9(2):e88952.  https://doi.org/10.1371/journal.pone.0088952PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Steiner JL, Murphy EA (2012) Importance of chemokine (CC-motif) ligand 2 in breast cancer. Int J Biol Markers 27(3):179–185.  https://doi.org/10.5301/JBM.2012.9345CrossRefGoogle Scholar
  131. 131.
    Yi EH, Lee CS, Lee J-K, Lee YJ, Shin MK, Cho C-H, Kang KW, Lee JW, Han W, Noh D-Y, Kim Y-N, Cho I-H, Ye S-k (2013) STAT3-RANTES autocrine signaling is essential for tamoxifen resistance in human breast cancer cells. Mol Cancer Res 11(1):31–42.  https://doi.org/10.1158/1541-7786.mcr-12-0217PubMedCrossRefGoogle Scholar
  132. 132.
    Zhou B, Sun C, Li N, Shan W, Lu H, Guo L, Guo E, Xia M, Weng D, Meng L, Hu J, Ma D, Chen G (2016) Cisplatin-induced CCL5 secretion from CAFs promotes cisplatin-resistance in ovarian cancer via regulation of the STAT3 and PI3K/Akt signaling pathways. Int J Oncol 48(5):2087–2097.  https://doi.org/10.3892/ijo.2016.3442PubMedCrossRefGoogle Scholar
  133. 133.
    Johnson-Holiday C, Singh R, Johnson E, Singh S, Stockard CR, Grizzle WE, Lillard JW (2011) CCL25 mediates migration, invasion and matrix metalloproteinase expression by breast cancer cells in a CCR9-dependent fashion. Int J Oncol 38:1279–1285PubMedPubMedCentralGoogle Scholar
  134. 134.
    Johnson EL, Singh R, Singh S, Johnson-Holiday CM, Grizzle WE, Partridge EE, Lillard JW (2010) CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion. World J Surg Oncol 8(1):62.  https://doi.org/10.1186/1477-7819-8-62PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Johnson EL, Singh R, Johnson-Holiday CM, Grizzle WE, Partridge EE, Lillard JW, Singh S (2010) CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion. J Ovarian Res 3:15.  https://doi.org/10.1186/1757-2215-3-15PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Sharma PK, Singh R, Novakovic KR, Eaton JW, Grizzle WE, Singh S (2010) CCR9 mediates PI3K/AKT-dependent antiapoptotic signals in prostate cancer cells and inhibition of CCR9-CCL25 interaction enhances the cytotoxic effects of etoposide. Int J Cancer 127(9):2020–2030.  https://doi.org/10.1002/ijc.25219PubMedCrossRefGoogle Scholar
  137. 137.
    Li B, Wang Z, Zhong Y, Lan J, Li X, Lin H (2015) CCR9–CCL25 interaction suppresses apoptosis of lung cancer cells by activating the PI3K/Akt pathway. Med Oncol 32(3):66.  https://doi.org/10.1007/s12032-015-0531-0PubMedCrossRefGoogle Scholar
  138. 138.
    Qiuping Z, Jei X, Youxin J, Wei J, Chun L, Jin W, Qun W, Yan L, Chunsong H, Mingzhen Y, Qingping G, Kejian Z, Zhimin S, Qun L, Junyan L, Jinquan T (2004) CC chemokine ligand 25 enhances resistance to apoptosis in CD4+ T cells from patients with T-cell lineage acute and chronic lymphocytic leukemia by means of Livin activation. Cancer Res 64(20):7579–7587.  https://doi.org/10.1158/0008-5472.can-04-0641PubMedCrossRefGoogle Scholar
  139. 139.
    Johnson-Holiday C, Singh R, Johnson EL, Grizzle WE, Lillard JW, Singh S (2011) CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion. World J Surg Oncol 9(1):46.  https://doi.org/10.1186/1477-7819-9-46PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Mackall CL, Fry TJ, Gress RE (2011) Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 11(5):330–342CrossRefGoogle Scholar
  141. 141.
    Cui L, Fu J, Pang JC, Qiu ZK, Liu XM, Chen FR, Shi HL, Ng HK, Chen ZP (2012) Overexpression of IL-7 enhances cisplatin resistance in glioma. Cancer Biol Ther 13(7):496–503.  https://doi.org/10.4161/cbt.19592PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Sade H, Sarin A (2003) IL-7 inhibits dexamethasone-induced apoptosis via Akt/PKB in mature, peripheral T cells. Eur J Immunol 33(4):913–919.  https://doi.org/10.1002/eji.200323782PubMedCrossRefGoogle Scholar
  143. 143.
    Liu Z-H, Wang M-H, Ren H-J, Qu W, Sun L-M, Zhang Q-F, Qiu X-S, Wang E-H (2014) Interleukin 7 signaling prevents apoptosis by regulating bcl-2 and bax via the p53 pathway in human non-small cell lung cancer cells. Int J Clin Exp Pathol 7(3):870–881PubMedPubMedCentralGoogle Scholar
  144. 144.
    Hamidullah, Changkija B, Konwar R (2012) Role of interleukin-10 in breast cancer. Breast Cancer Res Treat 133(1):11–21.  https://doi.org/10.1007/s10549-011-1855-xPubMedCrossRefGoogle Scholar
  145. 145.
    Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y (2015) The paradoxical role of IL-10 in immunity and cancer. Cancer Lett 367(2):103–107.  https://doi.org/10.1016/j.canlet.2015.07.009PubMedCrossRefGoogle Scholar
  146. 146.
    Alas S, Bonavida B (2001) Rituximab inactivates signal transducer and activation of transcription 3 (STAT3) activity in B-non-Hodgkin’s lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of Bcl-2 and sensitization to cytotoxic drugs. Cancer Res 61(13):5137–5144PubMedGoogle Scholar
  147. 147.
    Danoch H, Kalechman Y, Albeck M, Longo DL, Sredni B (2015) Sensitizing B- and T- cell lymphoma cells to Paclitaxel/Abraxane–induced death by AS101 via inhibition of the VLA-4–IL10–Survivin axis. Mol Cancer Res 13(3):411–422.  https://doi.org/10.1158/1541-7786.mcr-14-0459PubMedCrossRefGoogle Scholar
  148. 148.
    Yang C, He L, He P, Liu Y, Wang W, He Y, Du Y, Gao F (2015) Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol 32(2):352.  https://doi.org/10.1007/s12032-014-0352-6PubMedCrossRefGoogle Scholar
  149. 149.
    Fabbi M, Carbotti G, Ferrini S (2015) Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J Leukoc Biol 97(4):665–675.  https://doi.org/10.1189/jlb.5RU0714-360RRPubMedCrossRefGoogle Scholar
  150. 150.
    Yao L, Zhang Y, Chen K, Hu X, Xu LX (2011) Discovery of IL-18 as a novel secreted protein contributing to doxorubicin resistance by comparative secretome analysis of MCF-7 and MCF-7/Dox. PLoS One 6(9):e24684.  https://doi.org/10.1371/journal.pone.0024684PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Yamamoto K, Seike M, Takeuchi S, Soeno C, Miyanaga A, Noro R, Minegishi Y, Kubota K, Gemma A (2014) miR-379/411 cluster regulates IL-18 and contributes to drug resistance in malignant pleural mesothelioma. Oncol Rep 32:2365–2372PubMedCrossRefGoogle Scholar
  152. 152.
    Liu X-C, Lian W, Zhang L-J, Feng X-C, Gao Y, Li S-X, Liu C, Cheng Y, Yang L, Wang X-J, Chen L, Wang R-Q, Chai J, Chen W-S (2015) Interleukin-18 down-regulates multidrug resistance-associated protein 2 expression through Farnesoid X receptor associated with nuclear factor kappa B and Yin Yang 1 in human hepatoma HepG2 cells. PLoS One 10(8):e0136215.  https://doi.org/10.1371/journal.pone.0136215PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Baghdadi M, Wada H, Nakanishi S, Abe H, Han N, Putra WE, Endo D, Watari H, Sakuragi N, Hida Y, Kaga K, Miyagi Y, Yokose T, Takano A, Daigo Y, Seino K-i (2016) Chemotherapy-induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells. Cancer Res 76(20):6030–6042.  https://doi.org/10.1158/0008-5472.can-16-1170PubMedCrossRefGoogle Scholar
  154. 154.
    Mimeault M, Batra SK (2010) Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer. J Cell Physiol 224(3):626–635.  https://doi.org/10.1002/jcp.22196PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Unsicker K, Spittau B, Krieglstein K (2013) The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev 24(4):373–384.  https://doi.org/10.1016/j.cytogfr.2013.05.003PubMedCrossRefGoogle Scholar
  156. 156.
    Huang C-Y, Beer TM, Higano CS, True LD, Vessella R, Lange PH, Garzotto M, Nelson PS (2007) Molecular alterations in prostate carcinomas that associate with in vivo exposure to chemotherapy: identification of a cytoprotective mechanism involving growth differentiation factor 15. Clin Cancer Res 13(19):5825–5833.  https://doi.org/10.1158/1078-0432.ccr-07-1037PubMedCrossRefGoogle Scholar
  157. 157.
    Zhao L, Lee BY, Brown DA, Molloy MP, Marx GM, Pavlakis N, Boyer MJ, Stockler MR, Kaplan W, Breit SN, Sutherland RL, Henshall SM, Horvath LG (2009) Identification of candidate biomarkers of therapeutic response to docetaxel by proteomic profiling. Cancer Res 69(19):7696–7703.  https://doi.org/10.1158/0008-5472.can-08-4901PubMedCrossRefGoogle Scholar
  158. 158.
    Mimeault M, Johansson SL, Batra SK (2013) Marked improvement of cytotoxic effects induced by docetaxel on highly metastatic and androgen-independent prostate cancer cells by downregulating macrophage inhibitory cytokine-1. Br J Cancer 108(5):1079–1091.  https://doi.org/10.1038/bjc.2012.484PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Meier JC, Haendler B, Seidel H, Groth P, Adams R, Ziegelbauer K, Kreft B, Beckmann G, Sommer A, Kopitz C (2015) Knockdown of platinum-induced growth differentiation factor 15 abrogates p27-mediated tumor growth delay in the chemoresistant ovarian cancer model A2780cis. Cancer Med 4(2):253–267.  https://doi.org/10.1002/cam4.354PubMedCrossRefGoogle Scholar
  160. 160.
    Joshi JP, Brown NE, Griner SE, Nahta R (2011) Growth differentiation factor 15 (GDF15)-mediated HER2 phosphorylation reduces trastuzumab sensitivity of HER2-overexpressing breast cancer cells. Biochem Pharmacol 82(9):1090–1099.  https://doi.org/10.1016/j.bcp.2011.07.082PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Griner SE, Wang KJ, Joshi JP, Nahta R (2013) Mechanisms of Adipocytokine-mediated Trastuzumab resistance in HER2-positive breast cancer cell lines. Curr Pharmacogenomics Person Med 11(1):31–41PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Zhai Y, Zhang J, Wang H, Lu W, Liu S, Yu Y, Weng W, Ding Z, Zhu Q, Shi J (2016) Growth differentiation factor 15 contributes to cancer-associated fibroblasts-mediated chemo-protection of AML cells. J Exp Clin Cancer Res 35(1):147.  https://doi.org/10.1186/s13046-016-0405-0PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Oh C-K, Lee SJ, Park S-H, Moon Y (2016) Acquisition of chemoresistance and other malignancy-related features of colorectal cancer cells are incremented by ribosome-inactivating stress. J Biol Chem 291(19):10173–10183.  https://doi.org/10.1074/jbc.M115.696609PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Panneerselvam J, Munshi A, Ramesh R (2013) Molecular targets and signaling pathways regulated by interleukin (IL)-24 in mediating its antitumor activities. J Mol Signal 8:1750–2187.  https://doi.org/10.1186/1750-2187-8-15CrossRefGoogle Scholar
  165. 165.
    Ma M, Zhao L, Sun G, Zhang C, Liu L, Du Y, Yang X, Shan B (2016) Mda-7/IL-24 enhances sensitivity of B cell lymphoma to chemotherapy drugs. Oncol Rep 35(5):3122–3130.  https://doi.org/10.3892/or.2016.4622PubMedCrossRefGoogle Scholar
  166. 166.
    Liu Z, Xu L, Yuan H, Zhang Y, Zhang X, Zhao D (2015) Oncolytic adenovirus mediated mda7/IL24 expression suppresses osteosarcoma growth and enhances sensitivity to doxorubicin. Mol Med Rep 12(4):6358–6364.  https://doi.org/10.3892/mmr.2015.4180PubMedCrossRefGoogle Scholar
  167. 167.
    Yacoub A, Mitchell C, Hong Y, Gopalkrishnan RV, Su Z-Z, Gupta P, Sauane M, Lebedeva IV, Curiel DT, Mahasreshti PJ, Rosenfeld MR, Broaddus WC, James CD, Grant S, Fisher PB, Dent P (2004) MDA-7 regulates cell growth and radiosensitivity in vitro of primary (non-established) human glioma cells. Cancer Biol Ther 3(8):739–751.  https://doi.org/10.4161/cbt.3.8.968PubMedCrossRefGoogle Scholar
  168. 168.
    Hu CW, Yin GF, Wang XR, Ren BW, Zhang WG, Bai QL, Lv YM, Li WL, Zhao WQ (2014) IL-24 induces apoptosis via upregulation of RNA-activated protein kinase and enhances temozolomide-induced apoptosis in glioma cells. Oncol Res 22(3):159–165.  https://doi.org/10.3727/096504015X14298122915628PubMedCrossRefGoogle Scholar
  169. 169.
    Fang L, Cheng Q, Bai J, Qi YD, Liu JJ, Li LT, Zheng JN (2013) An oncolytic adenovirus expressing interleukin-24 enhances antitumor activities in combination with paclitaxel in breast cancer cells. Mol Med Rep 8(5):1416–1424.  https://doi.org/10.3892/mmr.2013.1680PubMedCrossRefGoogle Scholar
  170. 170.
    Amirzada MI, Ma X, Gong X, Chen Y, Bashir S, Jin J (2014) Recombinant human interleukin 24 reverses Adriamycin resistance in a human breast cancer cell line. Pharmacol Rep 66(5):915–919.  https://doi.org/10.1016/j.pharep.2014.05.010PubMedCrossRefGoogle Scholar
  171. 171.
    Emdad L, Sarkar D, Lebedeva IV, Su ZZ, Gupta P, Mahasreshti PJ, Dent P, Curiel DT, Fisher PB (2006) Ionizing radiation enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human ovarian cancer. J Cell Physiol 208(2):298–306.  https://doi.org/10.1002/jcp.20663PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remedios C, Fend L, Hannani D, Aymeric L, Ma Y, Niso-Santano M, Kepp O, Schultze JL, Tuting T, Belardelli F, Bracci L, La Sorsa V, Ziccheddu G, Sestili P, Urbani F, Delorenzi M, Lacroix-Triki M, Quidville V, Conforti R, Spano JP, Pusztai L, Poirier-Colame V, Delaloge S, Penault-Llorca F, Ladoire S, Arnould L, Cyrta J, Dessoliers MC, Eggermont A, Bianchi ME, Pittet M, Engblom C, Pfirschke C, Preville X, Uze G, Schreiber RD, Chow MT, Smyth MJ, Proietti E, Andre F, Kroemer G, Zitvogel L (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20(11):1301–1309.  https://doi.org/10.1038/nm.3708PubMedCrossRefGoogle Scholar
  173. 173.
    Bennett CL, Djulbegovic B, Norris LB, Armitage JO (2013) Colony-stimulating factors for febrile neutropenia during cancer therapy. N Engl J Med 368(12):1131–1139.  https://doi.org/10.1056/NEJMct1210890PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Weiner HL, Cohen JA (2002) Treatment of multiple sclerosis with cyclophosphamide: critical review of clinical and immunologic effects. Multi Scler 8(2):142–154.  https://doi.org/10.1191/1352458502ms790oaCrossRefGoogle Scholar
  175. 175.
    Seggewiss R, Lore K, Greiner E, Magnusson MK, Price DA, Douek DC, Dunbar CE, Wiestner A (2005) Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood 105(6):2473–2479.  https://doi.org/10.1182/blood-2004-07-2527PubMedCrossRefGoogle Scholar
  176. 176.
    Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanellopoulos J, Martin F, Rebe C, Apetoh L, Ghiringhelli F (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19(1):57–64.  https://doi.org/10.1038/nm.2999CrossRefPubMedGoogle Scholar
  177. 177.
    Shurin MR (2013) Dual role of immunomodulation by anticancer chemotherapy. Nat Med 19(1):20–22.  https://doi.org/10.1038/nm.3045PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Bohm S, Montfort A, Pearce OM, Topping J, Chakravarty P, Everitt GL, Clear A, McDermott JR, Ennis D, Dowe T, Fitzpatrick A, Brockbank EC, Lawrence AC, Jeyarajah A, Faruqi AZ, McNeish IA, Singh N, Lockley M, Balkwill FR (2016) Neoadjuvant chemotherapy modulates the immune microenvironment in metastases of tubo-ovarian high-grade serous carcinoma. Clin Cancer Res 22(12):3025–3036.  https://doi.org/10.1158/1078-0432.CCR-15-2657PubMedCrossRefGoogle Scholar
  179. 179.
    Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rebe C, Ghiringhelli F (2010) 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70(8):3052–3061.  https://doi.org/10.1158/0008-5472.CAN-09-3690CrossRefGoogle Scholar
  180. 180.
    North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155(4):1063–1074PubMedCrossRefGoogle Scholar
  181. 181.
    Schiavoni G, Mattei F, Di Pucchio T, Santini SM, Bracci L, Belardelli F, Proietti E (2000) Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95(6):2024–2030PubMedCrossRefGoogle Scholar
  182. 182.
    Glaser M (1979) Regulation of specific cell-mediated cytotoxic response against SV40-induced tumor associated antigens by depletion of suppressor T cells with cyclophosphamide in mice. J Exp Med 149(3):774–779PubMedCrossRefGoogle Scholar
  183. 183.
    Zhong H, Han B, Tourkova IL, Lokshin A, Rosenbloom A, Shurin MR, Shurin GV (2007) Low-dose paclitaxel prior to intratumoral dendritic cell vaccine modulates intratumoral cytokine network and lung cancer growth. Clin Cancer Res 13(18 Pt 1):5455–5462.  https://doi.org/10.1158/1078-0432.CCR-07-0517PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Wang J, Kobayashi M, Han M, Choi S, Takano M, Hashino S, Tanaka J, Kondoh T, Kawamura K, Hosokawa M (2002) MyD88 is involved in the signalling pathway for Taxol-induced apoptosis and TNF-alpha expression in human myelomonocytic cells. Br J Haematol 118(2):638–645PubMedCrossRefGoogle Scholar
  185. 185.
    Albain KS, Barlow WE, Ravdin PM, Farrar WB, Burton GV, Ketchel SJ, Cobau CD, Levine EG, Ingle JN, Pritchard KI, Lichter AS, Schneider DJ, Abeloff MD, Henderson IC, Muss HB, Green SJ, Lew D, Livingston RB, Martino S, Osborne CK, Breast Cancer Intergroup of North A (2009) Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 374(9707):2055–2063.  https://doi.org/10.1016/S0140-6736(09)61523-3-3PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Argyriou AA, Assimakopoulos K, Iconomou G, Giannakopoulou F, Kalofonos HP (2011) Either called “chemobrain” or “chemofog,” the long-term chemotherapy-induced cognitive decline in cancer survivors is real. J Pain Symptom Manag 41(1):126–139.  https://doi.org/10.1016/j.jpainsymman.2010.04.021CrossRefGoogle Scholar
  187. 187.
    Crawford J, Ozer H, Stoller R, Johnson D, Lyman G, Tabbara I, Kris M, Grous J, Picozzi V, Rausch G et al (1991) Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med 325(3):164–170.  https://doi.org/10.1056/NEJM199107183250305PubMedCrossRefGoogle Scholar
  188. 188.
    Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249(1):9–17PubMedCrossRefGoogle Scholar
  189. 189.
    Cheung YT, Ng T, Shwe M, Ho HK, Foo KM, Cham MT, Lee JA, Fan G, Tan YP, Yong WS, Madhukumar P, Loo SK, Ang SF, Wong M, Chay WY, Ooi WS, Dent RA, Yap YS, Ng R, Chan A (2015) Association of proinflammatory cytokines and chemotherapy-associated cognitive impairment in breast cancer patients: a multi-centered, prospective, cohort study. Ann Oncol 26(7):1446–1451.  https://doi.org/10.1093/annonc/mdv206PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Janelsins MC, Mustian KM, Palesh OG, Mohile SG, Peppone LJ, Sprod LK, Heckler CE, Roscoe JA, Katz AW, Williams JP, Morrow GR (2012) Differential expression of cytokines in breast cancer patients receiving different chemotherapies: implications for cognitive impairment research. Support Care Cancer 20(4):831–839.  https://doi.org/10.1007/s00520-011-1158-0PubMedCrossRefGoogle Scholar
  191. 191.
    Rochfort KD, Collins LE, Murphy RP, Cummins PM (2014) Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS One 9(7):e101815.  https://doi.org/10.1371/journal.pone.0101815PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Watkins LR, Maier SF, Goehler LE (1995) Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci 57(11):1011–1026CrossRefGoogle Scholar
  193. 193.
    Hyka N, Dayer JM, Modoux C, Kohno T, Edwards CK 3rd, Roux-Lombard P, Burger D (2001) Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97(8):2381–2389PubMedCrossRefGoogle Scholar
  194. 194.
    Ren X, St Clair DK, Butterfield DA (2017) Dysregulation of cytokine mediated chemotherapy induced cognitive impairment. Pharmacol Res 117:267–273.  https://doi.org/10.1016/j.phrs.2017.01.001PubMedCrossRefGoogle Scholar
  195. 195.
    Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2006) Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity. Neurobiol Dis 23(1):127–139.  https://doi.org/10.1016/j.nbd.2006.02.013PubMedCrossRefGoogle Scholar
  196. 196.
    Groves TR, Farris R, Anderson JE, Alexander TC, Kiffer F, Carter G, Wang J, Boerma M, Allen AR (2017) 5-fluorouracil chemotherapy upregulates cytokines and alters hippocampal dendritic complexity in aged mice. Behav Brain Res 316:215–224.  https://doi.org/10.1016/j.bbr.2016.08.039PubMedCrossRefGoogle Scholar
  197. 197.
    Wang XM, Lehky TJ, Brell JM, Dorsey SG (2012) Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 59(1):3–9.  https://doi.org/10.1016/j.cyto.2012.03.027PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Schafers M, Sorkin L (2008) Effect of cytokines on neuronal excitability. Neurosci Lett 437(3):188–193.  https://doi.org/10.1016/j.neulet.2008.03.052PubMedCrossRefGoogle Scholar
  199. 199.
    Postma TJ, Vermorken JB, Liefting AJ, Pinedo HM, Heimans JJ (1995) Paclitaxel-induced neuropathy. Ann Oncol 6(5):489–494PubMedCrossRefGoogle Scholar
  200. 200.
    Verstappen CC, Heimans JJ, Hoekman K, Postma TJ (2003) Neurotoxic complications of chemotherapy in patients with cancer: clinical signs and optimal management. Drugs 63(15):1549–1563PubMedCrossRefGoogle Scholar
  201. 201.
    Lisse TS, Middleton LJ, Pellegrini AD, Martin PB, Spaulding EL, Lopes O, Brochu EA, Carter EV, Waldron A, Rieger S (2016) Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proc Natl Acad Sci U S A 113(15):E2189–E2198.  https://doi.org/10.1073/pnas.1525096113PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Peters CM, Jimenez-Andrade JM, Jonas BM, Sevcik MA, Koewler NJ, Ghilardi JR, Wong GY, Mantyh PW (2007) Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol 203(1):42–54.  https://doi.org/10.1016/j.expneurol.2006.07.022CrossRefPubMedGoogle Scholar
  203. 203.
    Cairo MS (2000) Dose reductions and delays: limitations of myelosuppressive chemotherapy. Oncology (Williston Park) 14(9 Suppl 8):21–31Google Scholar
  204. 204.
    Chen YM, Whang-Peng J, Liu JM, Kuo BI, Wang SY, Tsai CM, Perng RP (1996) Serum cytokine level fluctuations in chemotherapy-induced myelosuppression. Jpn J Clin Oncol 26(1):18–23PubMedCrossRefGoogle Scholar
  205. 205.
    Weber J, Yang JC, Topalian SL, Parkinson DR, Schwartzentruber DS, Ettinghausen SE, Gunn H, Mixon A, Kim H, Cole D et al (1993) Phase I trial of subcutaneous interleukin-6 in patients with advanced malignancies. J Clin Oncol 11(3):499–506.  https://doi.org/10.1200/JCO.1993.11.3.499PubMedCrossRefGoogle Scholar
  206. 206.
    Wood LJ, Nail LM, Perrin NA, Elsea CR, Fischer A, Druker BJ (2006) The cancer chemotherapy drug etoposide (VP-16) induces proinflammatory cytokine production and sickness behavior-like symptoms in a mouse model of cancer chemotherapy-related symptoms. Biol Res Nurs 8(2):157–169.  https://doi.org/10.1177/1099800406290932PubMedCrossRefGoogle Scholar
  207. 207.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35.  https://doi.org/10.1038/nri978PubMedCrossRefGoogle Scholar
  208. 208.
    Gannon PO, Poisson AO, Delvoye N, Lapointe R, Mes-Masson AM, Saad F (2009) Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients. J Immunol Methods 348(1–2):9–17.  https://doi.org/10.1016/j.jim.2009.06.004PubMedCrossRefGoogle Scholar
  209. 209.
    Craig M, Ying C, Loberg RD (2008) Co-inoculation of prostate cancer cells with U937 enhances tumor growth and angiogenesis in vivo. J Cell Biochem 103(1):1–8.  https://doi.org/10.1002/jcb.21379PubMedCrossRefGoogle Scholar
  210. 210.
    Levina V, Su Y, Nolen B, Liu X, Gordin Y, Lee M, Lokshin A, Gorelik E (2008) Chemotherapeutic drugs and human tumor cells cytokine network. Int J Cancer 123(9):2031–2040.  https://doi.org/10.1002/ijc.23732PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Lev DC, Onn A, Melinkova VO, Miller C, Stone V, Ruiz M, McGary EC, Ananthaswamy HN, Price JE, Bar-Eli M (2004) Exposure of melanoma cells to Dacarbazine results in enhanced tumor growth and metastasis in vivo. J Clin Oncol 22(11):2092–2100.  https://doi.org/10.1200/JCO.2004.11.070PubMedCrossRefGoogle Scholar
  212. 212.
    Lev DC, Ruiz M, Mills L, McGary EC, Price JE, Bar-Eli M (2003) Dacarbazine causes transcriptional up-regulation of interleukin 8 and vascular endothelial growth factor in melanoma cells: a possible escape mechanism from chemotherapy. Mol Cancer Ther 2. (August:753–763PubMedGoogle Scholar
  213. 213.
    Mahon KL, Lin HM, Castillo L, Lee BY, Lee-Ng M, Chatfield MD, Chiam K, Breit SN, Brown DA, Molloy MP, Marx GM, Pavlakis N, Boyer MJ, Stockler MR, Daly RJ, Henshall SM, Horvath LG (2015) Cytokine profiling of docetaxel-resistant castration-resistant prostate cancer. Br J Cancer 112(8):1340–1348.  https://doi.org/10.1038/bjc.2015.74PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, Goldman JM, Melo JV (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101(6):2368–2373.  https://doi.org/10.1182/blood.V101.6.2368PubMedCrossRefGoogle Scholar
  215. 215.
    Zhang H, Wu H, Guan J, Wang L, Ren X, Shi X, Liang Z, Liu T (2015) Paracrine SDF-1α signaling mediates the effects of PSCs on GEM chemoresistance through an IL-6 autocrine loop in pancreatic cancer cells. Oncotarget 6(5):3085–3097PubMedGoogle Scholar
  216. 216.
    Suh Y-A, Jo S-Y, Lee H-Y, Lee C (2014) Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells. Int J Oncol 46(3):1405–1411.  https://doi.org/10.3892/ijo.2014.2808PubMedCrossRefGoogle Scholar
  217. 217.
    Wang Y, Niu XL, Guo XQ, Yang J, Li L, Qu Y, Hu CX, Mao LQ, Wang D (2015) IL6 induces TAM resistance via kinase-specific phosphorylation of ERα in OVCA cells. J Mol Endocrinol 54(3):351–361.  https://doi.org/10.1530/JME-15-0011PubMedCrossRefGoogle Scholar
  218. 218.
    Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, Daniel D, Hwang ES, Rugo HS, Coussens LM (2014) Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26(5):623–637.  https://doi.org/10.1016/j.ccell.2014.09.006PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Stassi G, Todaro M, Zerilli M, Ricci-Vitiani L, Di Liberto D, Patti M, Florena A, Di Gaudio F, Di Gesù G, De Maria R (2003) Thyroid cancer resistance to chemotherapeutic drugs via autocrine production of Interleukin-4 and Interleukin-10. Cancer Res 63(20):6784–6790PubMedGoogle Scholar
  220. 220.
    Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, Prior JL, Piwnica-Worms D, Bridger G, Ley TJ, DiPersio JF (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113(24):6206–6214.  https://doi.org/10.1182/blood-2008-06-162123PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Cho B-S, Zeng Z, Mu H, Wang Z, Konoplev S, McQueen T, Protopopova M, Cortes J, Marszalek JR, Peng S-B, Ma W, Davis RE, Thornton DE, Andreeff M, Konopleva M (2015) Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy. Blood 126(2):222–232.  https://doi.org/10.1182/blood-2015-02-628677PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Simstein R, Burow M, Parker A, Weldon C, Beckman B (2003) Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med (Maywood) 228(9):995–1003CrossRefGoogle Scholar
  223. 223.
    Van Obberghen-Schilling E, Tucker RP, Saupe F, Gasser I, Cseh B, Orend G (2011) Fibronectin and tenascin-C: accomplices in vascular morphogenesis during development and tumor growth. Int J Dev Biol 55(4–5):511–525.  https://doi.org/10.1387/ijdb.103243eoPubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Derek W. Edwardson
    • 1
  • Amadeo M. Parissenti
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  • A. Thomas Kovala
    • 1
    • 2
    • 3
    • 6
  1. 1.Graduate Program in Biomolecular SciencesLaurentian UniversitySudburyCanada
  2. 2.Department of Chemistry and BiochemistryLaurentian UniversitySudburyCanada
  3. 3.Division of Medical SciencesNorthern Ontario School of MedicineSudburyCanada
  4. 4.Health Sciences North Research InstituteSudburyCanada
  5. 5.Division of Oncology, Faculty of MedicineUniversity of OttawaOttawaCanada
  6. 6.Department of BiologyLaurentian UniversitySudburyCanada

Personalised recommendations