Advertisement

Therapeutic Options for Metastatic Breast Cancer

  • Manpreet Sambi
  • Bessi Qorri
  • William Harless
  • Myron R. SzewczukEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1152)

Abstract

Metastatic breast cancer is the most common cancer in women after skin cancer, with a 5-year survival rate of 26%. Due to its high prevalence, it is important to develop therapies that go beyond those that just provide palliation of symptoms. Currently, there are several types of therapies available to help treat breast cancer including: hormone therapy, immunotherapy, and chemotherapy, with each one depending on both the location of metastases and morphological characteristics. Although technological and scientific advancements continue to pave the way for improved therapies that adopt a targeted and personalized approach, the fact remains that the outcomes of current first-line therapies have not significantly improved over the last decade. In this chapter, we review the current understanding of the pathology of metastatic breast cancer before thoroughly discussing local and systemic therapies that are administered to patients diagnosed with metastatic breast cancer. In addition, our review will also elaborate on the genetic profile that is characteristic of breast cancer as well as the local tumor microenvironment that shapes and promotes tumor growth and cancer progression. Lastly, we will present promising novel therapies being developed for the treatment of this disease.

Keywords

Metastatic breast cancer Targeted therapies Tumor microenvironment Nanoparticles Drug delivery systems Immunotherapy Oseltamivir phosphate 

Notes

Acknowledgements

This work was supported in part by grants to MR Szewczuk from the Natural Sciences and Engineering Research Council of Canada (NSERC), a private sector cancer funding from the Josefowitz Family and Encyt Technologies, Inc. to MR Szewczuk.

M Sambi is a recipient of the Queen’s Graduate Award (QGA). B Qorri is a recipient of the QGA and the 2017 Terry Fox Research Institute Transdisciplinary Training Program in Cancer Research. The authors report no other conflicts of interest in this work.

Author Contributions

All authors contributed equally toward drafting and critically revising the paper and agree to be equally accountable for all aspects of the work.

References

  1. 1.
    Canadian Cancer Society’s Advisory Committee on Cancer Statistics (2017)Google Scholar
  2. 2.
    Cheng YC, Ueno NT (2012) Improvement of survival and prospect of cure in patients with metastatic breast cancer. Breast Cancer 19(3):191–199PubMedCrossRefGoogle Scholar
  3. 3.
    Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559CrossRefGoogle Scholar
  4. 4.
    Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68(10):3645PubMedCrossRefGoogle Scholar
  5. 5.
    Taube JH, Herschkowitz JI, Komurov K et al (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci 107(35):15449–15454PubMedCrossRefGoogle Scholar
  6. 6.
    Patel LR, Camacho DF, Shiozawa Y, Pienta KJ, Taichman RS (2011) Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol 7(11):1285–1297PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Stoletov K, Kato H, Zardouzian E et al (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123(13):2332–2341PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563CrossRefPubMedGoogle Scholar
  9. 9.
    Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829CrossRefGoogle Scholar
  10. 10.
    Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited—the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128(11):2527–2535PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Roskelley CD, Bissell MJ (2002) The dominance of the microenvironment in breast and ovarian cancer. Semin Cancer Biol 12(2):97–104PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Luga V, Zhang L, Viloria-Petit Alicia M et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556CrossRefGoogle Scholar
  13. 13.
    Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20(9):1487–1495PubMedCrossRefGoogle Scholar
  14. 14.
    Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 91(4):431–437PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pagani O, Senkus E, Wood W et al (2010) International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? JNCI J Natl Cancer Inst 102(7):456–463PubMedCrossRefGoogle Scholar
  16. 16.
    Vlastos G, Smith DL, Singletary SE et al (2004) Long-term survival after an aggressive surgical approach in patients with breast cancer hepatic metastases. Ann Surg Oncol 11(9):869–874PubMedCrossRefGoogle Scholar
  17. 17.
    Pocard M, Pouillart P, Asselain B, Salmon RJ (2000) Hepatic resection in metastatic breast cancer: results and prognostic factors. Eur J Surg Oncol (EJSO) 26(2):155–159CrossRefGoogle Scholar
  18. 18.
    Jetske Ruiterkamp ACV, Bosscha K, Vivianne CG, Tjan-Heijnen MFE (2009) Impact of breast surgery on survival in patients with distant metastases at initial presentation: a systematic review of the literature. Breast Cancer Res Treat 120(1):9–16PubMedCrossRefGoogle Scholar
  19. 19.
    Rapiti E, Verkooijen HM, Vlastos G et al (2006) Complete excision of primary breast tumor improves survival of patients with metastatic breast cancer at diagnosis. J Clin Oncol 24(18):2743–2749PubMedCrossRefGoogle Scholar
  20. 20.
    Gnerlich J, Jeffe DB, Deshpande AD, Beers C, Zander C, Margenthaler JA (2007) Surgical removal of the primary tumor increases overall survival in patients with metastatic breast cancer: analysis of the 1988–2003 SEER data. Ann Surg Oncol 14(8):2187–2194PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Fields RC, Jeffe DB, Trinkaus K et al (2007) Surgical resection of the primary tumor is associated with increased long-term survival in patients with stage IV breast cancer after controlling for site of metastasis. Ann Surg Oncol 14(12):3345–3351PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Badwe R, Parmar B (2013) Surgical removal of primary breast tumor and axillary lymph nodes at first presentation in women with metastatic breast cancer; a prospective randomized controlled trial. Breast Cancer Symposium. San AntonioGoogle Scholar
  23. 23.
    Morrow M, Burstein H, Harris JR (2015) Malignant tumors of the breast. In: Cancer: principles and practice of oncology, 10th edn. Philadelphia, Pa, Lippincott Williams & WilkinsGoogle Scholar
  24. 24.
    Smith GL, Xu Y, Buchholz TA et al (2012) Association between treatment with brachytherapy vs whole-breast irradiation and subsequent mastectomy, complications, and survival among older women with invasive breast cancer. JAMA 307(17):1827–1837PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dawood S, Gonzalez-Angulo AM (2013) Progress in the biological understanding and management of breast cancer-associated central nervous system metastases. Oncologist 18(6):675–684PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dellas K (2011) Does radiotherapy have curative potential in metastatic patients? The concept of local therapy in oligometastatic breast cancer. Breast Care 6(5):363–368PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Paridaens R, Dirix L, Lohrisch C et al (2003) Mature results of a randomized phase II multicenter study of exemestane versus tamoxifen as first-line hormone therapy for postmenopausal women with metastatic breast cancer. Ann Oncol 14(9):1391–1398PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Mayer EL, Burstein HJ (2007) Chemotherapy for metastatic breast cancer. Hematol Oncol Clin N Am 21(2):257–272CrossRefGoogle Scholar
  29. 29.
    Del Mastro L, Catzeddu T, Boni L et al (2006) Prevention of chemotherapy-induced menopause by temporary ovarian suppression with goserelin in young, early breast cancer patients. Ann Oncol 17(1):74–78PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Geisler J, Haynes B, Anker G, Dowsett M, Lønning PE (2002) Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study. J Clin Oncol 20(3):751–757PubMedCrossRefGoogle Scholar
  31. 31.
    Buzdar A (2000) Exemestane in advanced breast cancer. Anti-Cancer Drugs 11(8):609–616PubMedCrossRefGoogle Scholar
  32. 32.
    Bertelli G, Garrone O, Merlano M et al (2005) Sequential treatment with exemestane and non-steroidal aromatase inhibitors in advanced breast cancer. Oncology 69(6):471–477PubMedCrossRefGoogle Scholar
  33. 33.
    Peng J, Sengupta S, Jordan VC (2009) Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anti-Cancer Agents Med Chem 9(5):481–499CrossRefGoogle Scholar
  34. 34.
    Howell SJ, Johnston SRD, Howell A (2004) The use of selective estrogen receptor modulators and selective estrogen receptor down-regulators in breast cancer. Best Pract Res Clin Endocrinol Metab 18(1):47–66PubMedCrossRefGoogle Scholar
  35. 35.
    Francis PA, Regan MM, Fleming GF et al (2014) Adjuvant ovarian suppression in premenopausal breast cancer. N Engl J Med 372(5):436–446PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mathew A, Davidson NE (2015) Adjuvant endocrine therapy for premenopausal women with hormone-responsive breast cancer. Breast 24:S120–S125PubMedCrossRefGoogle Scholar
  37. 37.
    Hortobagyi GN (1998) Treatment of breast cancer. N Engl J Med 339(14):974–984PubMedCrossRefGoogle Scholar
  38. 38.
    Zeichner SB, Terawaki H, Gogineni K (2016) A review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer Basic Clin Res 10:25–36CrossRefGoogle Scholar
  39. 39.
    O’Shaughnessy J (2005) Extending survival with chemotherapy in metastatic breast cancer. Oncologist 10(3):20–29PubMedCrossRefGoogle Scholar
  40. 40.
    Crozier JA, Swaika A, Moreno-Aspitia A (2014) Adjuvant chemotherapy in breast cancer: to use or not to use, the anthracyclines. World J Clin Oncol 5(3):529–538PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    O’Brien MER, Wigler N, Inbar M et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Blum JL, Jones SE, Buzdar AU et al (1999) Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 17(2):485–485PubMedCrossRefGoogle Scholar
  43. 43.
    Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792CrossRefGoogle Scholar
  44. 44.
    Vogel CL, Cobleigh MA, Tripathy D et al (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726PubMedCrossRefGoogle Scholar
  45. 45.
    Lipton A, Ali SM, Leitzel K et al (2002) Elevated serum HER-2/neu level predicts decreased response to hormone therapy in metastatic breast cancer. J Clin Oncol 20(6):1467–1472PubMedCrossRefGoogle Scholar
  46. 46.
    Johnston S, Pippen J, Pivot X et al (2009) Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor–positive metastatic breast cancer. J Clin Oncol 27(33):5538–5546CrossRefGoogle Scholar
  47. 47.
    Guarneri V, Lenihan DJ, Valero V et al (2006) Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D. Anderson cancer center experience. J Clin Oncol 24(25):4107–4115PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Cobleigh MA, Langmuir VK, Sledge GW et al (2003) A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 30:117–124PubMedCrossRefGoogle Scholar
  49. 49.
    Valachis A, Polyzos NP, Patsopoulos NΑ, Georgoulias V, Mavroudis D, Mauri D (2010) Bevacizumab in metastatic breast cancer: a meta-analysis of randomized controlled trials. Breast Cancer Res Treat 122(1):1–7PubMedCrossRefGoogle Scholar
  50. 50.
    Sambi M, Qorri B, Malardier-Jugroot C, Szewczuk M (2017) Advancements in polymer science: ‘Smart’ drug delivery systems for the treatment of cancer. MOJ Polym Sci 1(3):00016Google Scholar
  51. 51.
    Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599PubMedCrossRefGoogle Scholar
  52. 52.
    Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semin Original Inv 26(1):57–64Google Scholar
  53. 53.
    Li X, McTaggart M, Malardier-Jugroot C (2016) Synthesis and characterization of a pH responsive folic acid functionalized polymeric drug delivery system. Biophys Chem 214–215:17–26PubMedCrossRefGoogle Scholar
  54. 54.
    Li X, Szewczuk MR, Malardier-Jugroot C (2016) Folic acid-conjugated amphiphilic alternating copolymer as a new active tumor targeting drug delivery platform. Drug Des Devel Ther 10:4101–4110PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Heo DN, Yang DH, Moon H-J et al (2012) Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials 33(3):856–866PubMedCrossRefGoogle Scholar
  56. 56.
    Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851PubMedCrossRefGoogle Scholar
  57. 57.
    Marty M, Cognetti F, Maraninchi D et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23(19):4265–4274PubMedCrossRefGoogle Scholar
  58. 58.
    Kaufman B, Mackey JR, Clemens MR et al (2009) Trastuzumab plus anastrozole aersus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2–positive, hormone receptor–positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol 27(33):5529–5537PubMedCrossRefGoogle Scholar
  59. 59.
    Robert NJ, Diéras V, Glaspy J et al (2011) RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2–negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29(10):1252–1260PubMedCrossRefGoogle Scholar
  60. 60.
    Miles DW, Chan A, Dirix LY et al (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2–negative metastatic breast cancer. J Clin Oncol 28(20):3239–3247PubMedCrossRefGoogle Scholar
  61. 61.
    Sanchez-Rivera FJ, Jacks T (2015) Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15(7):387–395PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lee JH, Zhao XM, Yoon I et al (2016) Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers. Cell Discov 2:16025PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wang CY, Uray IP, Mazumdar A, Mayer JA, Brown PH (2012) SLC22A5/OCTN2 expression in breast cancer is induced by estrogen via a novel intronic estrogen-response element (ERE). Breast Cancer Res Treat 134(1):101–115PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tran LM, Zhang B, Zhang Z et al (2011) Inferring causal genomic alterations in breast cancer using gene expression data. BMC Syst Biol 5:121PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zhang NG, Ge GQ, Meyer R et al (2008) Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci U S A 105(35):13033–13038PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lefebvre C, Bachelot T, Filleron T et al (2016) Mutational profile of metastatic breast cancers: a retrospective analysis. PLoS Med 13(12):e1002201PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bai X, Zhang E, Ye H et al (2014) PIK3CA and TP53 gene mutations in human breast cancer tumors frequently detected by ion torrent DNA sequencing. PLoS One 9(6):e99306PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Finn RS, Martin M, Rugo HS et al (2016) Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375(20):1925–1936CrossRefGoogle Scholar
  69. 69.
    Chirila C, Mitra D, Colosia A et al (2017) Comparison of palbociclib in combination with letrozole or fulvestrant with endocrine therapies for advanced/metastatic breast cancer: network meta-analysis. Curr Med Res Opin 33(8):1457–1466PubMedCrossRefGoogle Scholar
  70. 70.
    Osborne C, Wilson P, Tripathy D (2004) Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist 9(4):361–377PubMedCrossRefGoogle Scholar
  71. 71.
    Yao SH, He ZY, Chen C (2015) CRISPR/Cas9-mediated genome editing of epigenetic factors for cancer therapy. Hum Gene Ther 26(7):463–471PubMedCrossRefGoogle Scholar
  72. 72.
    Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH (2012) Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev 26(4):344–349PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Szyf M, Pakneshan P, Rabbani SA (2004) DNA methylation and breast cancer. Biochem Pharmacol 68(6):1187–1197PubMedCrossRefGoogle Scholar
  74. 74.
    Hu XC, Wong IH, Chow LW (2003) Tumor-derived aberrant methylation in plasma of invasive ductal breast cancer patients: clinical implications. Oncol Rep 10(6):1811–1815PubMedGoogle Scholar
  75. 75.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170PubMedCrossRefGoogle Scholar
  77. 77.
    Xue W, Chen S, Yin H et al (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514(7522):380–384PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Fantozzi A, Christofori G (2006) Mouse models of breast cancer metastasis. Breast Cancer Res BCR 8(4):212PubMedCrossRefGoogle Scholar
  79. 79.
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37PubMedCrossRefGoogle Scholar
  80. 80.
    Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:19CrossRefGoogle Scholar
  81. 81.
    Wu Y, Zhou BP (2010) TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer 102(4):639–644PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhao X, Xu Z, Li H (2017) NSAIDs use and reduced metastasis in cancer patients: results from a meta-analysis. Sci Rep 7(1):1875PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kumar N, Drabu S, Mondal SC (2013) NSAID’s and selectively COX-2 inhibitors as potential chemoprotective agents against cancer: 1st Cancer Update. Arab J Chem 6(1):1–23CrossRefGoogle Scholar
  84. 84.
    Dierssen-Sotos T, Gómez-Acebo I, de Pedro M et al (2016) Use of non-steroidal anti-inflammatory drugs and risk of breast cancer: the Spanish Multi-Case-control (MCC) study. BMC Cancer 16(1):660PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science (New York, NY) 352(6282):175–180CrossRefGoogle Scholar
  86. 86.
    Gilkes DM, Semenza GL (2013) Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol (London, England) 9(11):1623–1636CrossRefGoogle Scholar
  87. 87.
    Favaro E, Lord S, Harris AL, Buffa FM (2011) Gene expression and hypoxia in breast cancer. Genome Med 3(8):55–55PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3:83–92PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wong CC-L, Gilkes DM, Zhang H et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci 108(39):16369–16374PubMedCrossRefGoogle Scholar
  90. 90.
    Park JE, Tan HS, Datta A et al (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9(6):1085–1099PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Onnis B, Rapisarda A, Melillo G (2009) Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med 13(9a):2780–2786PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Burroughs SK, Kaluz S, Wang D, Wang K, Van Meir EG, Wang B (2013) Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. Future Med Chem 5(5):553–572.  https://doi.org/10.4155/fmc.4113.4117CrossRefPubMedGoogle Scholar
  93. 93.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62PubMedCrossRefGoogle Scholar
  94. 94.
    Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205–2218PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Goel S, Wong AH, Jain RK (2012) Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2(3):a006486PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Nielsen DL, Andersson M, Andersen JL, Kamby C (2010) Antiangiogenic therapy for breast cancer. Breast Cancer Res BCR 12(5):209PubMedCrossRefGoogle Scholar
  97. 97.
    Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974PubMedCrossRefGoogle Scholar
  98. 98.
    Zhang P, Gao WY, Turner S, Ducatman BS (2003) Gleevec (STI-571) inhibits lung cancer cell growth (A549) and potentiates the cisplatin effect in vitro. Mol Cancer 2:1PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Brufsky A, Rivera RR, Hurvitz SA et al (2010) Progression-free survival. (PFS) in patient subgroups in RIBBON-2, a phase III trial of chemotherapy (chemo) plus or minus bevacizumab (BV) for second-line treatment of HER2-negative, locally recurrent or metastatic breast cancer (MBC). J Clin Oncol 28:15_suppl, 1021CrossRefGoogle Scholar
  100. 100.
    Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78CrossRefGoogle Scholar
  102. 102.
    Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266PubMedCrossRefGoogle Scholar
  103. 103.
    Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Pyonteck SM, Akkari L, Schuhmacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Mao Y, Keller ET, Garfield DH, Shen K, Wang J (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32(1–2):303–315PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One 4(11):e7965PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hu Y-L, Fu Y-H, Tabata Y, Gao J-Q (2010) Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release 147(2):154–162PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Studeny M, Marini FC, Dembinski JL et al (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. JNCI J Natl Cancer Inst 96(21):1593–1603PubMedCrossRefGoogle Scholar
  109. 109.
    Boelens Mirjam C, Wu Tony J, Nabet Barzin Y et al (2014) Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159(3):499–513PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Suetsugu A, Honma K, Saji S, Moriwaki H, Ochiya T, Hoffman RM (2013) Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv Drug Deliv Rev 65(3):383–390PubMedCrossRefGoogle Scholar
  111. 111.
    Savina A, Furlán M, Vidal M, Colombo MI (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278(22):20083–20090PubMedCrossRefGoogle Scholar
  112. 112.
    King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12(1):421PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Bruce WR, Van Der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199:79–80PubMedCrossRefGoogle Scholar
  114. 114.
    Dick JE (2003) Breast cancer stem cells revealed. Proc Natl Acad Sci U S A 100(7):3547–3549PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037PubMedCrossRefGoogle Scholar
  116. 116.
    Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–10163PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Zhao J (2016) Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther 160:145–158PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Abdullah LN, Chow EK (2013) Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205(2):275–292PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Schwab LP, Peacock DL, Majumdar D et al (2012) Hypoxia-inducible factor 1alpha promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res BCR 14(1):R6PubMedCrossRefGoogle Scholar
  122. 122.
    Wilson TR, Fridlyand J, Yan Y et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487(7408):505–509PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Patel NM, Nozaki S, Shortle NH et al (2000) Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide. Oncogene 19(36):4159–4169PubMedCrossRefGoogle Scholar
  124. 124.
    Chow EK, Zhang XQ, Chen M et al (2011) Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 3(73):73ra21PubMedCrossRefGoogle Scholar
  125. 125.
    Li X, Sambi M, DeCarlo A et al (2018) Functionalized folic acid-conjugated amphiphilic alternating copolymer actively targets 3D multicellular tumour spheroids and delivers the hydrophobic drug to the inner core. Nanomaterials 8: 588–608PubMedCentralCrossRefPubMedGoogle Scholar
  126. 126.
    Hartmann LC, Keeney GL, Lingle WL et al (2007) Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 121(5):938–942PubMedCrossRefGoogle Scholar
  127. 127.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Demaria S, Kawashima N, Yang AM et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 11(2 Pt 1):728–734Google Scholar
  129. 129.
    van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190(3):355–366PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141–151CrossRefGoogle Scholar
  132. 132.
    Mittendorf EA, Philips AV, Meric-Bernstam F et al (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2(4):361–370PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Meats JE, Steele L, Bowen JG (1993) Identification of phospholipase D (PLD) activity in mouse peritoneal macrophages. Agents Actions 39 Spec No:C14–C16PubMedCrossRefGoogle Scholar
  135. 135.
    Henkels KM, Muppani NR, Gomez-Cambronero J (2016) PLD-specific small-molecule inhibitors decrease tumor-associated macrophages and neutrophils infiltration in breast tumors and lung and liver metastases. PLoS One 11(11):e0166553PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Tan M, Yu D (2007) Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol 608:119–129PubMedCrossRefGoogle Scholar
  137. 137.
    Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712PubMedCrossRefGoogle Scholar
  138. 138.
    Wang Y (2010) Breast cancer metastasis driven by ErbB2 and 14-3-3zeta: a division of labor. Cell Adhes Migr 4(1):7–9CrossRefGoogle Scholar
  139. 139.
    Eccles SA (2011) The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int J Dev Biol 55(7–9):685–696PubMedCrossRefGoogle Scholar
  140. 140.
    Hoelder S, Clarke PA, Workman P (2012) Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 6(2):155–176PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Li D, Marchenko ND (2017) ErbB2 inhibition by lapatinib promotes degradation of mutant p53 protein in cancer cells. Oncotarget 8(4):5823–5833PubMedGoogle Scholar
  142. 142.
    Dziadkowiec KN, Gasiorowska E, Nowak-Markwitz E, Jankowska A (2016) PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. Prz Menopauzalny 15(4):215–219PubMedGoogle Scholar
  143. 143.
    Ouchi T, Monteiro AN, August A, Aaronson SA, Hanafusa H (1998) BRCA1 regulates p53-dependent gene expression. Proc Natl Acad Sci U S A 95(5):2302–2306PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Morales J, Li L, Fattah FJ et al (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24(1):15–28PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Chalmers AJ (2009) The potential role and application of PARP inhibitors in cancer treatment. Br Med Bull 89:23–40PubMedCrossRefGoogle Scholar
  146. 146.
    O’Shaughnessy J, Osborne C, Pippen JE et al (2011) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364(3):205–214PubMedCrossRefGoogle Scholar
  147. 147.
    Murai J, Huang SY, Das BB et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72(21):5588–5599PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Gilmour AM, Abdulkhalek S, Cheng TS et al (2013) A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer. Cell Signal25(12):2587–2603PubMedCrossRefGoogle Scholar
  149. 149.
    Amith SR, Jayanth P, Franchuk S et al (2010) Neu1 desialylation of sialyl α-2,3-linked β-galactosyl residues of TOLL-like is essential for receptor activation and cellular signaling. Cellular Signalling 22: 314–324PubMedCrossRefGoogle Scholar
  150. 150.
    Abdulkhalek S, Amith SR, Franchuk SL et al (2011) Neu1 sialidase and matrix metalloproteinase-9 cross-talk Is essential for Toll-like receptor activation and cellular signaling. J Biol Chem 286 (42): 36532–36549PubMedCrossRefGoogle Scholar
  151. 151.
    Abdulkhalek S, Guo M, Amith SR et al (2012) G-protein coupled receptor agonists mediate Neu1 sialidase and matrix metalloproteinase-9 cross-talk to induce transactivation of TOLL-like receptors and cellular signaling. Cellular Signalling 24: 2035–2042PubMedCrossRefGoogle Scholar
  152. 152.
    Abdulkhalek S, Szewczuk MR (2013) Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses. Cellular Signalling 25: 2093–2105PubMedCrossRefGoogle Scholar
  153. 153.
    Alghamdi F, Guo M, Abdulkhalek S et al (2014) A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes. Cellular Signalling 26: 1355–1368PubMedCrossRefGoogle Scholar
  154. 154.
    Haxho F, Alghamdi F, Neufeld RJ et al (2014) Novel Insulin Receptor-Signaling Platform. Int J Diabetes Clin Res 1:1-10CrossRefGoogle Scholar
  155. 155.
    Haxho F, Haq S, Szewczuk MR (2018) Biased G protein-coupled receptor agonism mediates Neu1 sialidase and matrix metalloproteinase-9 crosstalk to induce transactivation of insulin receptor signaling. Cellular Signalling 43: 71–84PubMedCrossRefGoogle Scholar
  156. 156.
    Haxho F, Neufeld RJ, Szewczuk MR (2016) Neuraminidase-1: A novel therapeutic target in multistage tumorigenesis. Oncotarget 7: 40860–40881PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Hrynyk M, Ellis JP, Haxho F et al (2015) Therapeutic designed poly (lactic-co-glycolic acid) cylindrical oseltamivir phosphate-loaded implants impede tumor neovascularization, growth and metastasis in mouse model of human pancreatic carcinoma. Drug Des Devel Ther 9:4573–4586PubMedPubMedCentralGoogle Scholar
  158. 158.
    O’Shea LK, Abdulkhalek S, Allison S, Neufeld RJ, Szewczuk MR (2014) Therapeutic target-ing of Neu1 sialidase with oseltamivir phosphate (Tamiflu(R)) disables cancer cell survival in human pancreatic cancer with acquired chemoresistance. Oncotarget Ther 7:117– 134Google Scholar
  159. 159.
    Abdulkhalek S, Geen OD, Brodhagenn L, Haxho F et al (2014) Transcriptional factor snail controls tumor neovascularization, growth and metastasis in mouse model of human ovarian carcinoma. Clinical and Translational Medicine 3: 1-28Google Scholar
  160. 160.
    Haxho F, Allison S, Alghamdi F et al (2014) Oseltamivir phosphate monotherapy ablates tumor neovascularization, growth, and metastasis in mouse model of human triple-negative breast adenocarcinoma. Breast Cancer Targets Ther 6:191–203Google Scholar
  161. 161.
    Abdulkhalek S, Hrynyk M, Szewczuk MR (2013) A novel G-protein-coupled receptorsignaling platform and its targeted translation in human disease. Res Rep Biochem 3:17–30Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manpreet Sambi
    • 1
  • Bessi Qorri
    • 1
  • William Harless
    • 2
  • Myron R. Szewczuk
    • 1
    Email author
  1. 1.Department of Biomedical and Molecular SciencesQueen’s UniversityKingstonCanada
  2. 2.Encyt Technologies Inc.MembertouCanada

Personalised recommendations