Cross-Roads to Drug Resistance and Metastasis in Breast Cancer: miRNAs Regulatory Function and Biomarker Capability

  • Nataly Naser Al Deen
  • Farah Nassar
  • Rihab NasrEmail author
  • Rabih TalhoukEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1152)


Breast cancer and specifically metastatic breast cancer (mBC) constitutes a major health burden worldwide with the highest number of cancer-related mortality among women across the globe. Despite having similar subtypes, breast cancer patients present with a spectrum of aggressiveness and responsiveness to therapy due to cancer heterogeneity. Drug resistance and metastasis contribute to therapy failure and cancer recurrence. Research in the past two decades has focused on microRNAs (miRNAs), small endogenous non-coding RNAs, as active players in tumorigenesis, therapy resistance and metastasis and as novel non-invasive cancer biomarkers. This is due to their unique dysregulated signatures throughout tumor progression and their tumor suppressive/oncogenic roles. Identifying miRNAs signatures capable of predicting therapy response and metastatic onset in breast cancer patients might improve prognosis and offer prolonged median and relapse-free survival rate. Despite the growing reports on miRNAs as novel non-invasive biomarkers in breast cancer and as regulators of breast cancer drug resistance or metastasis, the quest on whether some miRNAs are capable of regulating both simultaneously is inevitable, yet understudied. This chapter will review the role of miRNAs as biomarkers and as active players in inducing/reversing anti-cancer drug resistance, driving/blocking metastasis or regulating both simultaneously in breast cancer.


Breast cancer Metastatic breast cancer miRNA Drug resistance Metastasis Biomarker Prognostic Therapy-predictive Multi-drug resistance 



Breast cancer


Circulating tumor cells


Ductal carcinoma in situ


Disease-free survival


Estrogen receptor


Metastatic breast cancer


Multidrug resistance


miRNAs or miRs


Overall survival


Progression-free survival


Triple negative breast cancer



The authors would like to acknowledge Prof. Mounir AbouHaidar, Professor of Virology at the University of Toronto Dept. Cell & Systems Biology, for his critical reading of the manuscript and Ms. Nancy Nasr Al Deen for illustrating Fig. 18.1. The authors would also like to acknowledge the support of the Lebanese National Council for Scientific Research (CNRS-L), the University Research Board (URB-AUB) and the International Breast Cancer and Nutrition (IBCN) project. Dr. Rabih Talhouk and Dr. Rihab Nasr are both members of IBCN. Ms. Nataly Naser Al Deen is the recipient of the AUB-CNRS-L scholarship.

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30CrossRefGoogle Scholar
  2. 2.
    Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci 98(19):10869–10874PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Liu Z, Zhang X-S, Zhang S (2014) Breast tumor subgroups reveal diverse clinical prognostic power. Sci Rep 4:4002PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L et al (2015) Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 24:S26–S35PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Spitale A, Mazzola P, Soldini D, Mazzucchelli L, Bordoni A (2008) Breast cancer classification according to immunohistochemical markers: clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland. Ann Oncol 20(4):628–635PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  7. 7.
    Bhattacharyya M, Nath J, Bandyopadhyay S (2015) MicroRNA signatures highlight new breast cancer subtypes. Gene 556(2):192–198PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Adams BD, Wali VB, Cheng CJ, Inukai S, Booth CJ, Agarwal S et al (2016) miR-34a silences c-SRC to attenuate tumor growth in triple-negative breast cancer. Cancer Res 76(4):927–939PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the seed and soil hypothesis revisited. Nat Rev Cancer 3(6):453–458CrossRefGoogle Scholar
  10. 10.
    Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    McGuire A, Brown JA, Kerin MJ (2015) Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev 34(1):145–155PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Nassar FJ, Nasr R, Talhouk R (2017) MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther 172:34–49PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Shao Y, Sun X, He Y, Liu C, Liu H (2015) Elevated levels of serum tumor markers CEA and CA15-3 are prognostic parameters for different molecular subtypes of breast cancer. PLoS One 10(7):e0133830PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dobbe E, Gurney K, Kiekow S, Lafferty JS, Kolesar JM (2008) Gene-expression assays: new tools to individualize treatment of early-stage breast cancer. Am J Health-Syst Pharm 65(1):23–28PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J et al (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res 5(10):2929PubMedPubMedCentralGoogle Scholar
  16. 16.
    BoydNF G (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236CrossRefGoogle Scholar
  17. 17.
    Checka CM, Chun JE, Schnabel FR, Lee J, Toth H (2012) The relationship of mammographic density and age: implications for breast cancer screening. Am J Roentgenol 198(3):W292–W2W5CrossRefGoogle Scholar
  18. 18.
    Singh SK, Pal Bhadra M, Girschick HJ, Bhadra U (2008) MicroRNAs–micro in size but macro in function. FEBS J 275(20):4929–4944PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234CrossRefGoogle Scholar
  20. 20.
    Kutanzi KR, Yurchenko OV, Beland FA, Vasyl’ FC, Pogribny IP (2011) MicroRNA-mediated drug resistance in breast cancer. Clin Epigenetics 2(2):171PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DRF (2015) The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol 137(1):143–151PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531CrossRefGoogle Scholar
  23. 23.
    Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15(1):21–32PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934CrossRefGoogle Scholar
  25. 25.
    Li M, Li J, Ding X, He M, Cheng S-Y (2010) microRNA and cancer. AAPS J 12(3):309–317PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Raza U, Saatci Ö, Uhlmann S, Ansari SA, Eyüpoğlu E, Yurdusev E et al (2016) The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer. Oncotarget 7(31):49859PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chim SS, Shing TK, Hung EC, Leung T-Y, Lau T-K, Chiu RW et al (2008) Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54(3):482–490PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lima LG, Chammas R, Monteiro RQ, Moreira MEC, Barcinski MA (2009) Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett 283(2):168–175PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Merkerova M, Vasikova A, Belickova M, Bruchova H (2010) MicroRNA expression profiles in umbilical cord blood cell lineages. Stem Cells Dev 19(1):17–26PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wu K, Feng J, Xing F, Liu Y, Sharma S, Watabe K (2017) Exosomal miR-19a: a novel communicator between cancer cell and osteoclast in osteolytic bone metastasis of breast cancer. AACR 77:4940–4940Google Scholar
  34. 34.
    Zhong S, Chen X, Wang D, Zhang X, Shen H, Yang S et al (2016) MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes. Oncotarget 7(15):19601–19609PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Le MT, Hamar P, Guo C, Basar E, Perdigão-Henriques R, Balaj L et al (2014) miR-200–containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124(12):5109PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ma R, Jiang T, Kang X (2012) Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 31(1):38PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Li Z, Peng Z, Gu S, Zheng J, Feng D, Qin Q et al (2017) Global analysis of miRNA–mRNA interaction network in breast cancer with brain metastasis. Anticancer Res 37(8):4455–4468PubMedPubMedCentralGoogle Scholar
  38. 38.
    Mohammadi-Yeganeh S, Paryan M, Arefian E, Vasei M, Ghanbarian H, Mahdian R et al (2016) MicroRNA-340 inhibits the migration, invasion, and metastasis of breast cancer cells by targeting Wnt pathway. Tumor Biol 37(7):8993–9000CrossRefGoogle Scholar
  39. 39.
    Madhavan D, Peng C, Wallwiener M, Zucknick M, Nees J, Schott S et al (2016) Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis 37(5):461–470CrossRefGoogle Scholar
  40. 40.
    Markou A, Zavridou M, Sourvinou I, Yousef G, Kounelis S, Malamos N et al (2016) Direct comparison of metastasis-related miRNAs expression levels in circulating tumor cells, corresponding plasma, and primary tumors of breast cancer patients. Clin Chem 62(7):1002–1011PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Peng F, Tang H, Liu P, Shen J, Guan X, Xie X et al (2017) Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci Rep 7:9022PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Teoh S, Das S (2017) The role of MicroRNAs in diagnosis, prognosis, metastasis and resistant cases in breast cancer. Curr Pharm Des 23(12):1845PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Miao Y, Zheng W, Li N, Su Z, Zhao L, Zhou H et al (2017) MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Sci Rep 7:41942PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Roth C, Rack B, Müller V, Janni W, Pantel K, Schwarzenbach H (2010) Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 12(6):R90PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chen W, Cai F, Zhang B, Barekati Z, Zhong XY (2013) The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumor Biol 34(1):455–462CrossRefGoogle Scholar
  47. 47.
    Schwarzenbach H, Milde-Langosch K, Steinbach B, Müller V, Pantel K (2012) Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res Treat 134(3):933–941CrossRefGoogle Scholar
  48. 48.
    Ahmad A, Sethi S, Chen W, Ali-Fehmi R, Mittal S, Sarkar FH (2014) Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis. Am J Transl Res 6(4):384PubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhao F, Hu G, Wang X, Zhang X, Zhang Y, Yu Z (2012) Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J Int Med Res 40(3):859–866CrossRefGoogle Scholar
  50. 50.
    Madhavan D, Zucknick M, Wallwiener M, Cuk K, Modugno C, Scharpff M et al (2012) Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res 18(21):5972–5982PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Eichelser C, Flesch-Janys D, Chang-Claude J, Pantel K, Schwarzenbach H (2013) Deregulated serum concentrations of circulating cell–free microRNAs miR-17, miR-34a, miR-155, and miR-373 in human breast cancer development and progression. Clin Chem 59(10):1489–1496PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I et al (2017) Beyond circulating microRNA biomarkers: urinary microRNAs in ovarian and breast cancer. Tumor Biol 39(5):1010428317695525CrossRefGoogle Scholar
  54. 54.
    Zheng R, Pan L, Gao J, Ye X, Chen L, Zhang X et al (2015) Prognostic value of miR-106b expression in breast cancer patients. J Surg Res 195(1):158–165PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Sahlberg KK, Bottai G, Naume B, Burwinkel B, Calin GA, Borresen-Dale A-L et al (2015) A serum microRNA signature predicts tumor relapse and survival in triple negative breast cancer patients. Clin Cancer Res 21:1207–1214CrossRefGoogle Scholar
  56. 56.
    Halvorsen AR, Helland Å, Gromov P, Wielenga VT, Talman MLM, Brunner N et al (2017) Profiling of microRNAs in tumor interstitial fluid of breast tumors–a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol Oncol 11(2):220–234PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Lánczky A, Nagy Á, Bottai G, Munkácsy G, Szabó A, Santarpia L et al (2016) miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat 160(3):439–446PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Guestini F, McNamara KM, Ishida T, Sasano H (2016) Triple negative breast cancer chemosensitivity and chemoresistance: current advances in biomarkers indentification. Expert Opin Ther Targets 20(6):705–720PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Chen X, Lu P, Wang D-D, Yang S-J, Wu Y, Shen H-Y et al (2016) The role of miRNAs in drug resistance and prognosis of breast cancer formalin-fixed paraffin-embedded tissues. Gene 595(2):221–226PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Erbes T, Hirschfeld M, Rücker G, Jaeger M, Boas J, Iborra S et al (2015) Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer 15:193PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C et al (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sarkar FH, Li Y, Wang Z, Kong D, Ali S (2010) Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 13(3):57–66PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ellis LM, Hicklin DJ (2009) Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res 15(24):7471–7478PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Sorrentino A, Liu C-G, Addario A, Peschle C, Scambia G, Ferlini C (2008) Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol 111(3):478–486PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Allen KE, Weiss GJ (2010) Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9:3126–3136PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K et al (2010) Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 79(6):817–824PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Vasyl’ FC et al (2008) Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7(7):2152–2159PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Yang S-J, Wang D-D, Li J, Xu H-Z, Shen H-Y, Chen X et al (2017) Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene 623:5–14PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wu Q, Yang Z, Nie Y, Shi Y, Fan D (2014) Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett 347(2):159–166PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Zhao J-J, Lin J, Yang H, Kong W, He L, Ma X et al (2008) MicroRNA-221/222 negatively regulates estrogen receptorα and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lau L-Y, 劉麗儀 (2011) Identification of microRNAs associated with tamoxifen resistance in breast cancer. HKU Theses Online (HKUTO)Google Scholar
  72. 72.
    Hong L, Han Y, Zhang Y, Zhang H, Zhao Q, Wu K et al (2013) MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Expert Opin Ther Targets 17(9):1073–1080PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wang Z-X, Lu B-B, Wang H, Cheng Z-X, Yin Y-M (2011) MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res 42(4):281–290PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K (2012) Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene 31(2):149–160PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Mei M, Ren Y, Zhou X, Yuan X-B, Han L, Wang G-X et al (2010) Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat 9(1):77–86PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Xi Y et al (2010) Mir-125b confers the resistance of cancer cells to Taxol through suppression of Bak1. AACR 70, abstract 2109Google Scholar
  77. 77.
    Luqmani YA, Alam-Eldin N (2016) Overcoming resistance to endocrine therapy in breast cancer: new approaches to a nagging problem. Med Princ Pract 25(Suppl. 2):28–40PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Joshi T, Elias D, Stenvang J, Alves CL, Teng F, Lyng MB et al (2016) Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer. Oncotarget 7(35):57239–57253PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sachdeva M, Mo Y-Y (2010) miR-145-mediated suppression of cell growth, invasion and metastasis. Am J Transl Res 2(2):170PubMedPubMedCentralGoogle Scholar
  80. 80.
    Rehman SK, Huang W-C, Yu D (2010) MiR-21 upregulation in breast cancer cells leads to PTEN loss and Herceptin resistance. AACR 70, abstract 4033Google Scholar
  81. 81.
    Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J et al (2011) Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 286(21):19127–19137PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC (2007) Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282(2):1479–1486PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    del Pilar Camacho-Leal M, Sciortino M, Cabodi S (2017) ErbB2 receptor in breast cancer: implications in cancer cell migration, invasion and resistance to targeted therapy. In: Breast cancer-from biology to medicine. InTechGoogle Scholar
  84. 84.
    Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C et al (2009) MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neureceptor status in breast cancer. Breast Cancer Res 11(3):R27PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK et al (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5(1):1–14CrossRefGoogle Scholar
  86. 86.
    Breunig C, Pahl J, Küblbeck M, Miller M, Antonelli D, Erdem N et al (2017) MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis 8(8):e2973PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Anastasov N, Höfig I, Vasconcellos IG, Rappl K, Braselmann H, Ludyga N et al (2012) Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells. Radiat Oncol 7(1):206PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Liang Z, Ahn J, Guo D, Votaw JR, Shim H (2013) MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res 30(4):1008–1016PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Raza U, Zhang JD, Şahin Ö (2014) MicroRNAs: master regulators of drug resistance, stemness, and metastasis. J Mol Med 92(4):321–336PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ma L, Teruya-Feldstein J, Weinberg RA (2008) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 455(7210):256CrossRefGoogle Scholar
  92. 92.
    Luqmani YA, Khajah MA (2015) MicroRNA in breast cancer—gene regulators and targets for novel therapies. In: A concise review of molecular pathology of breast cancer. InTechGoogle Scholar
  93. 93.
    Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celià-Terrassa T et al (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17(9):1101–1108PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Orso F, Quirico L, Virga F, Penna E, Dettori D, Cimino D et al (2016) miR-214 and miR-148b targeting inhibits dissemination of melanoma and breast cancer. Cancer Res 76(17):5151–5162PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Zou Q, Tang Q, Pan Y, Wang X, Dong X, Liang Z et al (2017) MicroRNA-22 inhibits cell growth and metastasis in breast cancer via targeting of SIRT1. Exp Ther Med 14:1009–1016PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Li W, Li G, Fan Z, Liu T (2017) Tumor-suppressive microRNA-452 inhibits migration and invasion of breast cancer cells by directly targeting RAB11A. Oncol Lett 14(2):2559–2565PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kong W, Yang H, He L, Zhao J-J, Coppola D, Dalton WS et al (2008) MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28(22):6773–6784PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC et al (2009) RETRACTED: a pleiotropically acting MicroRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA (2010) Concurrent suppression of integrin α5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res 70(12):5147–5154PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Valastyan S, Weinberg RA (2010) miR-31: a crucial overseer of tumor metastasis and other emerging roles. Cell Cycle 9(11):2124–2129PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Körner C, Keklikoglou I, Bender C, Wörner A, Münstermann E, Wiemann S (2013) MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C ϵ (PKCϵ). J Biol Chem 288(12):8750–8761PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Li H, Bian C, Liao L, Li J, Zhao RC (2011) miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat 126(3):565–575CrossRefPubMedGoogle Scholar
  104. 104.
    Lu Y, Qin T, Li J, Wang L, Zhang Q, Jiang Z et al (2017) MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther 24:386–392PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67(22):11001–11011CrossRefGoogle Scholar
  106. 106.
    Lee DY, Deng Z, Wang C-H, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci 104(51):20350–20355PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Soria-Valles C, Gutiérrez-Fernández A, Guiu M, Mari B, Fueyo A, Gomis R et al (2014) The anti-metastatic activity of collagenase-2 in breast cancer cells is mediated by a signaling pathway involving decorin and miR-21. Oncogene 33(23):3054–3063PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Croset M, Goehrig D, Frackowiak A, Bonnelye E, Ansieau S, Puisieux A et al (2014) TWIST1 expression in breast cancer cells facilitates bone metastasis formation. J Bone Miner Res 29(8):1886–1899PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Bishopric N, Speransky S, Kajan D, Laderian B, Iorns E, Clarke J et al. (2017) Abstract P4-07-03: dynamic regulation of a microRNA-mRNA network during breast cancer metastasis reveals an essential tumor-promoting role for miR-203. AACR 77, abstract P4-07-03Google Scholar
  110. 110.
    Blevins MA, Kouznetsova J, Krueger AB, King R, Griner LM, Hu X et al (2015) Small molecule, NSC95397, inhibits the CtBP1-protein partner interaction and CtBP1-mediated transcriptional repression. J Biomol Screen 20(5):663–672PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Okuda H, Xing F, Pandey PR, Sharma S, Watabe M, Pai SK et al (2013) miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 73(4):1434–1444PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Zare M, Bastami M, Solali S, Alivand M (2017) Aberrantly miRNA promoter methylation and EMT-involving miRNAs in breast cancer metastasis: diagnosis and therapeutic implications. J Cell Physiol 233:3729–3744PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sasheva P, Grossniklaus U (2017) Differentially methylated region-representational difference analysis (DMR-RDA): a powerful method to identify DMRs in uncharacterized genomes. Plant Epigenetics: Methods Protocol 1456:113–125CrossRefGoogle Scholar
  114. 114.
    Gacem RB, Abdelkrim OB, Ziadi S, Dhiab MB, Trimeche M (2014) Methylation of miR-124a-1, miR-124a-2, and miR-124a-3 genes correlates with aggressive and advanced breast cancer disease. Tumor Biol 35(5):4047–4056CrossRefGoogle Scholar
  115. 115.
    Niu J, Xue A, Chi Y, Xue J, Wang W, Zhao Z et al (2016) Induction of miRNA-181a by genotoxic treatments promotes chemotherapeutic resistance and metastasis in breast cancer. Oncogene 35(10):1302–1313PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Bai WD, Ye XM, Zhang MY, Zhu HY, Xi WJ, Huang X et al (2014) MiR-200c suppresses TGF-β signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer. Int J Cancer 135(6):1356–1368CrossRefGoogle Scholar
  117. 117.
    Schwarzenbach H (2017) Clinical relevance of circulating, cell-free and exosomal microRNAs in plasma and serum of breast cancer patients. Oncol Res Treat 40(7–8):423–429PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Pichler M, Calin G (2015) MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Br J Cancer 113(4):569–573PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ohno S-i, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N et al (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Huang G, Li S, Yang N, Zou Y, Zheng D, Xiao T (2017) Recent progress in circular RNAs in human cancers. Cancer Lett 404:8–18PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Arts and SciencesAmerican University of BeirutBeirutLebanon
  2. 2.Department of Internal Medicine, Faculty of MedicineAmerican University of BeirutBeirutLebanon
  3. 3.Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of MedicineAmerican University of BeirutBeirutLebanon

Personalised recommendations