Advertisement

Evolutionary Optimization on Artificial Neural Networks for Predicting the User’s Future Semantic Location

  • Antonios KaratzoglouEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1000)

Abstract

Location prediction has gained enormously in importance in the recent years. For this reason, there exists a great variety of research work carried out at both the academia and the industry. At the same time, there is an increasing trend towards utilizing additional semantic information aiming at building more accurate algorithms. Existing location prediction approaches rely mostly on data-driven models, such as Hidden Markov Chains, Bayes Networks and Artificial Neural Networks (ANN), with the latter achieving usually the best results. Most ANN-based solutions apply Grid Parameter Search and Stochastic Gradient Descent for training their models, that is, for identifying the optimal structure and weights of the network. In this work, motivated by the promising results of genetic algorithms in optimizing neural networks in temporal sequence learning areas, such as the gene and the stock price index prediction, we propose and evaluate their use in optimizing our ANN-based semantic location prediction model. It can be shown that evolutionary algorithms can lead to a significant improvement with respect to its predictive performance, as well as to the time needed for the model’s optimization.

Keywords

Evolutionary algorithms Artificial Neural Networks Semantic trajectories Semantic location prediction 

References

  1. 1.
    Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman, A.: A model for enriching trajectories with semantic geographical information. In: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, GIS 2007, pp. 22:1–22:8. ACM, New York (2007).  https://doi.org/10.1145/1341012.1341041
  2. 2.
    Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Pers. Ubiquitous Comput. 7(5), 275–286 (2003)CrossRefGoogle Scholar
  3. 3.
    Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Pers. Ubiquitous Comput. 10(4), 255–268 (2006)CrossRefGoogle Scholar
  4. 4.
    Hägerstraand, T.: What about people in regional science? Pap. Reg. Sci. 24(1), 7–24 (1970)CrossRefGoogle Scholar
  5. 5.
    Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2), 37–50 (1912)CrossRefGoogle Scholar
  6. 6.
    Karatzoglou, A., Jablonski, A., Beigl, M.: A Seq2Seq learning approach for modeling semantic trajectories and predicting the next location. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM (2018)Google Scholar
  7. 7.
    Karatzoglou, A., Khler, D., Beigl, M.: Semantic-enhanced multi-dimensional Markov chains on semantic trajectories for predicting future locations. Sensors 18(10) (2018). https://doi.org/10.3390/s18103582. http://www.mdpi.com/1424-8220/18/10/3582CrossRefGoogle Scholar
  8. 8.
    Karatzoglou, A., Köhler, D., Beigl, M.: Purpose-of-visit-driven semantic similarity analysis on semantic trajectories for enhancing the future location prediction. In: International Conference on Pervasive Computing and Communications Workshops (PerCom). IEEE (2018)Google Scholar
  9. 9.
    Karatzoglou, A., Lamp, S.C., Beigl, M.: Matrix factorization on semantic trajectories for predicting future semantic locations. In: Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 1–7. IEEE (2017)Google Scholar
  10. 10.
    Karatzoglou, A., Schnell, N., Beigl, M.: A convolutional neural network approach for modeling semantic trajectories and predicting future locations. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 61–72. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01418-6_7CrossRefGoogle Scholar
  11. 11.
    Karatzoglou, A., Sentürk, H., Jablonski, A., Beigl, M.: Applying artificial neural networks on two-layer semantic trajectories for predicting the next semantic location. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 233–241. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68612-7_27CrossRefGoogle Scholar
  12. 12.
    Krishnamurthy, R., Kapanipathi, P., Sheth, A.P., Thirunarayan, K.: Knowledge enabled approach to predict the location of Twitter users. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 187–201. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18818-8_12CrossRefGoogle Scholar
  13. 13.
    Long, X., Jin, L., Joshi, J.: Exploring trajectory-driven local geographic topics in foursquare. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp 2012, pp. 927–934. ACM, New York (2012)Google Scholar
  14. 14.
    Mala, C., Loganathan, M., Gopalan, N.P., SivaSelvan, B.: A novel genetic algorithm approach to mobility prediction in wireless networks. In: Ranka, S., et al. (eds.) IC3 2009. CCIS, vol. 40, pp. 49–57. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03547-0_6CrossRefGoogle Scholar
  15. 15.
    Malki, J., Wannous, R., Bouju, A., Vincent, C.: Temporal reasoning in trajectories using an ontological modelling approach. Control Cybern. 41 (2012)Google Scholar
  16. 16.
    Mantoro, T., Muataz, Z., Ayu, M.A.: Mobile user location prediction: genetic algorithm-based approach. In: 2010 IEEE Symposium on Industrial Electronics and Applications (ISIEA), pp. 345–349. IEEE (2010)Google Scholar
  17. 17.
    Ridhawi, I.A., Aloqaily, M., Karmouch, A., Agoulmine, N.: A location-aware user tracking and prediction system. In: 2009 Global Information Infrastructure Symposium, pp. 1–8, June 2009Google Scholar
  18. 18.
    Ridhawi, Y.A., Ridhawi, I.A., Karmouch, A., Nayak, A.: A context-aware and location prediction framework for dynamic environments. In: 2011 IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 172–179, October 2011Google Scholar
  19. 19.
    Samaan, N., Benmammar, B., Krief, F., Karmouch, A.: Prediction-based advanced resource reservation in mobile environments. In: Canadian Conference on Electrical and Computer Engineering 2005, pp. 1411–1414 (2005)Google Scholar
  20. 20.
    Samaan, N., Karmouch, A., Kheddouci, H.: Mobility prediction based service location and delivery. In: Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No. 04CH37513), vol. 4, pp. 2307–2310, May 2004Google Scholar
  21. 21.
    Samaan, N., Karmouch, A.: A mobility prediction architecture based on contextual knowledge and spatial conceptual maps. IEEE Trans. Mob. Comput. 4(6), 537–551 (2005)CrossRefGoogle Scholar
  22. 22.
    Spaccapietra, S., Parent, C., Damiani, M.L., de Macedo, J.A., Porto, F., Vangenot, C.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126–146 (2008).  https://doi.org/10.1016/j.datak.2007.10.008CrossRefGoogle Scholar
  23. 23.
    Tiwari, S., Kaushik, S.: Modeling personalized recommendations of unvisited tourist places using genetic algorithms. In: Chu, W., Kikuchi, S., Bhalla, S. (eds.) DNIS 2015. LNCS, vol. 8999, pp. 264–276. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16313-0_20CrossRefGoogle Scholar
  24. 24.
    Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)CrossRefGoogle Scholar
  25. 25.
    Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C: Emerg. Technol. 13(3), 211–234 (2005)CrossRefGoogle Scholar
  26. 26.
    Wannous, R., Malki, J., Bouju, A., Vincent, C.: Modelling mobile object activities based on trajectory ontology rules considering spatial relationship rules. In: Amine, A., Otmane, A., Bellatreche, L. (eds.) Modeling Approaches and Algorithms for Advanced Computer Applications, pp. 249–258. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-00560-7_29CrossRefGoogle Scholar
  27. 27.
    Wannous, R., Malki, J., Bouju, A., Vincent, C.: Time integration in semantic trajectories using an ontological modelling approach. In: Pechenizkiy, M., Wojciechowski, M. (eds.) New Trends in Databases and Information Systems, pp. 187–198. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-32518-2_18CrossRefGoogle Scholar
  28. 28.
    Wannous, R., Malki, J., Bouju, A., Vincent, C.: Trajectory ontology inference considering domain and temporal dimensions–application to marine mammals. Future Gener. Comput. Syst. 68, 491–499 (2016)CrossRefGoogle Scholar
  29. 29.
    Wannous, R., Vincent, C., Malki, J., Bouju, A.: An ontology-based approach for handling explicit and implicit knowledge over trajectories. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. CCIS, vol. 539, pp. 403–413. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23201-0_41CrossRefGoogle Scholar
  30. 30.
    Ye, J., Zhu, Z., Cheng, H.: What’s your next move: user activity prediction in location-based social networks. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 171–179. SIAM (2013)Google Scholar
  31. 31.
    Ying, J.J.C., Lee, W.C., Tseng, V.S.: Mining geographic-temporal-semantic patterns in trajectories for location prediction. ACM Trans. Intell. Syst. Technol. 5(1), 2:1–2:33 (2014)Google Scholar
  32. 32.
    Ying, J.J.C., Lee, W.C., Weng, T.C., Tseng, V.S.: Semantic trajectory mining for location prediction. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2011, pp. 34–43. ACM, New York (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chassis System Control, Advance EngineeringRobert BoschAbstattGermany

Personalised recommendations