Advertisement

Deep Learning and Change Detection for Fall Recognition

  • Sotiris K. TasoulisEmail author
  • Georgios I. Mallis
  • Spiros V. Georgakopoulos
  • Aristidis G. Vrahatis
  • Vassilis P. Plagianakos
  • Ilias G. Maglogiannis
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1000)

Abstract

Early fall detection is a crucial research challenge since the time delay from fall to first aid is a key factor that determines the consequences of a fall. Wearable sensors allow a reliable way for daily-life activities tracking, able to detect immediately a high-risk fall via a machine learning framework. Towards this direction, accelerometer devices are used widely for the assessment of fall risk. Although there is a plethora of studies under this perspective with promising results, several challenges still remain such as the extremely demanding data and power management as well as the discovery of false positive falls. In this work we propose a complete methodology based on the combination of the computationally demanding convolutional neural networks along with a lightweight change detection method. Our basic assumption is that it is possible to control computational resources for the operation of a classifier, suffice to be activated when a strong change in user’s movements is identified. The proposed methodology was applied to real experimental data providing reliable results that justify the original hypothesis.

Keywords

Deep Learning Change detection Fall detection Wearable devices 

Notes

Acknowledgments

This project has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No. 1901.

References

  1. 1.
    Abujiya, M., Riaz, M., Lee, M.H.: Enhanced cumulative sum charts for monitoring process dispersion. PloS One 10, e0124520 (2015)CrossRefGoogle Scholar
  2. 2.
    Aguiar, B., Rocha, T., Silva, J., Sousa, I.: Accelerometer-based fall detection for smartphones. In: 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2014)Google Scholar
  3. 3.
    Bagalà, F., et al.: Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLOS ONE 7(5), 1–9 (2012)CrossRefGoogle Scholar
  4. 4.
    Bourke, A., ÓLaighin, G.: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med. Eng. Phys. 30, 84–90 (2008)CrossRefGoogle Scholar
  5. 5.
    Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121–3124, August 2010Google Scholar
  6. 6.
    Brynolfsson, J., Sandsten, M.: Classification of one-dimensional non-stationary signals using the Wigner-Ville distribution in convolutional neural networks. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 326–330, August 2017Google Scholar
  7. 7.
    Castillo, J.C., Carneiro, D., Serrano-Cuerda, J., Novais, P., Fernández-Caballero, A., Neves, J.: A multi-modal approach for activity classification and fall detection. Int. J. Syst. Sci. 45(4), 810–824 (2014)CrossRefGoogle Scholar
  8. 8.
    Chen, D., Feng, W., Zhang, Y., Li, X., Wang, T.: A wearable wireless fall detection system with accelerators. In: 2011 IEEE International Conference on Robotics and Biomimetics, pp. 2259–2263, December 2011Google Scholar
  9. 9.
    Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)CrossRefGoogle Scholar
  10. 10.
    Georgakopoulos, S.V., Tasoulis, S.K., Maglogiannis, I., Plagianakos, V.P.: On-line fall detection via mobile accelerometer data. In: Chbeir, Richard, Manolopoulos, Yannis, Maglogiannis, Ilias, Alhajj, Reda (eds.) AIAI 2015. IAICT, vol. 458, pp. 103–112. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23868-5_8CrossRefGoogle Scholar
  11. 11.
    Georgakopoulos, S.V., Tasoulis, S.K., Plagianakos, V.P.: Efficient change detection for high dimensional data streams. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 2219–2222, October 2015Google Scholar
  12. 12.
    Granjon, P.: The CUSUM algorithm a small review (2014)Google Scholar
  13. 13.
    Greene, S., Thapliyal, H., Carpenter, D.: IoT-based fall detection for smart home environments. In: 2016 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), pp. 23–28, December 2016Google Scholar
  14. 14.
    Hsieh, K., Heller, T., Miller, A.B.: Risk factors for injuries and falls among adults with developmental disabilities. J. Intellect. Disabil. Res. 45(1), 76–82 (2001)CrossRefGoogle Scholar
  15. 15.
    Huang, C.L., Chung, C.Y.: A real-time model-based human motion tracking and analysis for human-computer interface systems. EURASIP J. Adv. Signal Process. 2004(11), 616891 (2004)CrossRefGoogle Scholar
  16. 16.
    Igual, R., Medrano, C.T., Plaza, I.: Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 12, 66 (2013)CrossRefGoogle Scholar
  17. 17.
    Kau, L.J., Chen, C.S.: A smart phone-based pocket fall accident detection, positioning, and rescue system. IEEE J. Biomed. Health Inform. 19(1), 44–56 (2015)CrossRefGoogle Scholar
  18. 18.
    Kepski, M., Kwolek, B.: Fall detection using ceiling-mounted 3D depth camera. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP), vol. 2, pp. 640–647. IEEE (2014)Google Scholar
  19. 19.
    Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489–501 (2014)CrossRefGoogle Scholar
  20. 20.
    Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., Li, Y.: Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J. Biomed. Health Inform. 18(6), 1915–1922 (2014)CrossRefGoogle Scholar
  21. 21.
    Maglogiannis, I., Doukas, C.: Intelligent health monitoring based on pervasive technologies and cloud computing. Int. J. Artif. Intell. Tools 23(03), 1460001 (2014)CrossRefGoogle Scholar
  22. 22.
    Maglogiannis, I., Ioannou, C., Tsanakas, P.: Fall detection and activity identification using wearable and hand-held devices. Integr. Comput.-Aided Eng. 23, 161–172 (2016)CrossRefGoogle Scholar
  23. 23.
    Manganaro, G., de Gyvez, J.P.: One-dimensional discrete-time CNN with multiplexed template-hardware. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(5), 764–769 (2000)CrossRefGoogle Scholar
  24. 24.
    Mauldin, T.R., Canby, M.E., Metsis, V., Ngu, A.H.H., Rivera, C.C.: SmartFall: A smartwatch-based fall detection system using deep learning. Sensors 18(10), 3363 (2018)CrossRefGoogle Scholar
  25. 25.
    Gia, T.N., et al.: IoT-based fall detection system with energy efficient sensor nodes, November 2016Google Scholar
  26. 26.
    Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Perry, M., Pignatiello, J.J.: Estimating the time of step change with Poisson CUSUM and EWMA control charts. Int. J. Prod. Res. 49, 2857–2871 (2011)CrossRefGoogle Scholar
  28. 28.
    Pierleoni, P., Belli, A., Palma, L., Pellegrini, M., Pernini, L., Valenti, S.: A high reliability wearable device for elderly fall detection. IEEE Sens. J. 15(8), 4544–4553 (2015)CrossRefGoogle Scholar
  29. 29.
    Shen, R.K., Yang, C.Y., Shen, V.R., Chen, W.C.: A novel fall prediction system on smartphones. IEEE Sens. J. 17(6), 1865–1871 (2017)CrossRefGoogle Scholar
  30. 30.
    Tasoulis, S., Doukas, C., Plagianakos, V., Maglogiannis, I.: Statistical data mining of streaming motion data for activity and fall recognition in assistive environments. Neurocomputing 107, 87–96 (2013)CrossRefGoogle Scholar
  31. 31.
    Tong, L., Song, Q., Ge, Y., Liu, M.: Hmm-based human fall detection and prediction method using tri-axial accelerometer. IEEE Sens. J. 13(5), 1849–1856 (2013)CrossRefGoogle Scholar
  32. 32.
    Tran, P.H., Tran, K.P.: The efficiency of CUSUM schemes for monitoring the coefficient of variation. Appl. Stoch. Model. Bus. Ind. 32(6), 870–881 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, D., Zhang, L., Xiong, Q.: A nonparametric CUSUM control chart based on the Mann-Whitney statistic. Commun. Stat.-Theory Methods 46, 2017 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wang, J., Zhang, Z., Bin, L., Lee, S., Sherratt, R.: An enhanced fall detection system for elderly person monitoring using consumer home networks. IEEE Trans. Consum. Electron. 60, 23–29 (2014)CrossRefGoogle Scholar
  35. 35.
    Xu, T., Zhou, Y., Zhu, J.: New advances and challenges of fall detection systems: a survey. Appl. Sci. 8(3), 418 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sotiris K. Tasoulis
    • 1
    Email author
  • Georgios I. Mallis
    • 1
  • Spiros V. Georgakopoulos
    • 1
  • Aristidis G. Vrahatis
    • 1
  • Vassilis P. Plagianakos
    • 1
  • Ilias G. Maglogiannis
    • 2
  1. 1.Department of Computer Science and Biomedical InformaticsUniversity of ThessalyVolosGreece
  2. 2.Department of Digital SystemsUniversity of PiraeusPiraeusGreece

Personalised recommendations