Experimental characterization of an osteosynthesis implant

  • O. RamirezEmail author
  • Ch. R. Torres-San-Miguel
  • M. Ceccarelli
  • G. Urriolagoitia-Calderon
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


This paper presents the experimental tests that have been carried out using a new implant design for osteosynthesis as a solution for the treatment of human rib fractures. First, it is provided a description of the proposed novel design of the osteosynthesis implant. Subsequently, it is described the proposal to develop an experimental test in order to determine if due to the use of this osteosynthesis implant the repaired rib becomes more rigid as compared to a healthy one. To carry out the experimental test, TEMARI test bed was used at the Robotics and Mechatronics Laboratory LARM at the University of Cassino in Italy. The obtained results showed from biomechanical aspects, that the design of the implant is an appropriate one for its application in the medical sector without being necessary to make any modification on its design. In addition, obtained results also showed the structural behavior of both the osteosynthesis plate and the rib when they are subjected to loading conditions simulating the respiratory cycle in humans.


Biomechanics Experimental Biomechanics implants human ribs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The first author wishes to gratefully acknowledge Consejo Nacional de Ciencia y Tecnologia (CONACyT) and Instituto Politécnico Nacional through scholarship “Beca mixta para estancias de investigación en el extranjero” for permitting his period of study at LARM of Cassino University in the A.Y. 2017-18


  1. 1.
    Christopher René Torres San-Miguel, Implante antirrotatorio para fractura de costilla, (Anti-rotatory implant for rib fractures), n. MX/u/2017/000533, 12/4/2017, Mexico City.Google Scholar
  2. 2.
    Labitzke, R.: On the question of biomechanical testing of metal implants for the thoracic wall stabilization. Langenbeck’s archive of surgery, vol. 354, pp. 169-171 (1981).Google Scholar
  3. 3.
    Sales, J., Ellis, T., Gillard, J., Liu, Q., Chen, J., Ham, B., Mayberry, J.: Biomechanical testing of a novel, minimally invasive rib fracture plating system. Journal of Trauma, vol. 65, pp. 1270–1271 (2008).Google Scholar
  4. 4.
    Bottlang, M., Long, W.B., Phelan, D., Fielder, D., Madey, S.M.: Surgical stabilization of flail chest injuries with MatrixRIB implants: A prospective observational study. Journal Care Injured, vol. 44, pp. 232-238 (2013).Google Scholar
  5. 5.
    Torres San Miguel, Ch.R., Implante antirrotatorio para fractura de costilla, (Anti-rotatory implant for rib fractures), n. MX/u/2017/000533, 12/4/2017, Mexico City.Google Scholar
  6. 6.
    Aguilar, L.A., Ceccarelli, M., Torres San Miguel, Ch.R., Urriolagoitia Sosa, G., Urriolagoitia Calderón, G.: Experimental Evaluation of Artificial Human Ribs. In: Mendes Carvalho, J.C., Martins, D., Simoni, R., Simas, H. MUSME 2017 IFToMM- FeIbIM Symposium on Multibody Systems and Mechatronics, vol. 54, pp. 434-443, Springer, Cham (2017).Google Scholar
  7. 7.
    Ramirez, O., Ceccarelli, M., Russo, M., Torres-San-Miguel, C. R., and Urriolagoitia-Calderon, G.: Experimental dynamic tests of rib implants: In: The Second International Conference of IFToMM ITALY 2018, pp. 353-361, Springer, Cham (2018).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • O. Ramirez
    • 1
    • 2
    Email author
  • Ch. R. Torres-San-Miguel
    • 2
  • M. Ceccarelli
    • 1
  • G. Urriolagoitia-Calderon
    • 2
  1. 1.LARM: Laboratory OF Robotics and MechatronicsUniversity of Cassino and South LatiumCassinoItaly
  2. 2.Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica Sección de Estudios de Posgrado e Investigación, Unidad Profesional “Adolfo López Mateos” ZacatencoMéxico D.F.México

Personalised recommendations