Multi-criteria design optimization of cam mechanisms combining different splines given by checkpoints

  • Léo Moussafir
  • Vigen ArakelianEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


This paper proposes a universal optimal approach to cam curve design. This approach consists of three main issues: the polynomial representation of splines given by checkpoints defining the specific motion of the follower; the connection of these splines by different degree of fitting in order to combine them in the entire cam profile and the optimization according to the objectives and the constraints formulated for different zones of the cam profile. An illustrative example is given based on the optimization of a production machine cam profile. The given simulation results show the effectiveness of the proposed approach.


Cam design optimization cam motion synthesis jerk contact stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsay, D.M., Lin, B.J.: Improving the geometry design of cylindrical cams using nonparametric rational B-spline, Comput.-Aided Des. 28 (1), 5–15. (1996)Google Scholar
  2. 2.
    Wu, L.I., Liu, C.H., Chen, T.W.: Disc cam mechanisms with concave-faced followers, Proc. IMechE, Part C: J Mech. Eng. Sci. 223 (6), 1443–1448. (2009)Google Scholar
  3. 3.
    Sateesh, N., Rao, C.S.P., Janardhan Reddy, T.A.: Optimisation of cam-follower motion using B-splines, Int. J. Comput. Integr. Manuf. 22 (6), 515–523. (2009)Google Scholar
  4. 4.
    Xiao, H.S., Zu, J.W.: Cam profile optimization for a new cam drive, J. Mech. Sci. Technol. 23 (10), 2592–2602. (2009)Google Scholar
  5. 5.
    Reeve, J.: Cams for Industry: A Handbook for Designers of Special Purpose Machines. s.l.: Amer Society of Mechanical, (1995).Google Scholar
  6. 6.
    Chen, Y.F.: Mechanics and Design of Cam Mechanisms, Pergamon Press, USA, (1982).Google Scholar
  7. 7.
    Norton, R.: Cam design and manufacturing handbook, Industrial Press, Inc., New York, (2002).Google Scholar
  8. 8.
    Bouzakis, K.D., Mitsi, S., Tsiafis, I.: Computer aided optimum design and NC milling of planar cam mechanisms, International Journal of Machine Tools and Manufacture, Vol. 37, No. 8, 1131-1142. (1997).Google Scholar
  9. 9.
    Mitsi, S., Bouzakis, K.-D., Tsiafis, J., Mansour, G.: Optimal synthesis of cam mechanism using cubic spline interpolation for cam NC milling. Journal of the Balkan Tribological Association, Vol. 7, No. 4, 225-233. (2001)Google Scholar
  10. 10.
    Tsiafis, I., Paraskevopoulou, R., Bouzakis, K.-D.: Selection of optimal design parameters for a cam mechanism using multi-objective genetic algorithm, Annals of the “Constantin Brancusi” University of TarguJiu, Engineering series, nr. 2, Romania, 57- 66. (2009).Google Scholar
  11. 11.
    Mansour, G., Sagris, D., Tsiafis, Ch., Mitsi, S., Bouzakis, K.-D.: Evolution of Hybrid Method for Industrial Manipulator Design Optimization, Journal of Production Engineering, Vol. 16, No. 1, 35-38. (2013)Google Scholar
  12. 12.
    Bouzakis, K.-D. et all.: Effect of film ion bombardment during the pvd process on the mechanical properties and cutting performance of TiAlN coated tools, Surface and Coatings Technology, Vol. 202, 826-830. (2007)Google Scholar
  13. 13.
    Bobzin, K. et all.: Vanadium Alloyed PVD CrAlN Coatings for Friction Reduction in Metal Forming Applications, Tribology in Industry, Vol. 34, N. 2, pp. 101-107. (2012).Google Scholar
  14. 14.
    Flocker, F.W.: Addressing cam wear and follower jump in single-dwell cam-follower systems with an adjustable modified trapezoidal acceleration cam profile, J. Eng. Gas. Turbines Power 131 (3), pp. 327–335. (2009)Google Scholar
  15. 15.
    Acharyya, S., Naskar, T.K.: Fractional polynomial mod traps for optimization of jerk and hertzian contact stress in cam surface, Comput. Struct. 86 (3–5), pp. 322–329, (2008)Google Scholar
  16. 16.
    Cardona, A., Lens, E., Nigro, N.: Optimal design of cams, Multibody Syst. Dyn. 7 (3), pp. 285–305. (2002)Google Scholar
  17. 17.
    Andresen, U., Singhose, W.: A simple procedure for modifying high-speed cam profiles for vibration reduction, J. Mech. Des., Trans. ASME 126 (6), pp. 1105–1108. (2004)Google Scholar
  18. 18.
    Flocker, F.W.: Controlling the frequency content of inertia forces in dwelling cam-follower systems, J. Mech. Des., Trans. ASME 129 (5), pp. 546–552. (2007)Google Scholar
  19. 19.
    Hwang, W.M., Yu, C.Z.: Optimal synthesis of the adjustable knock-out cam-follower mechanism of a bolt former, Proc. IMechE, Part C: J Mech. Eng. Sci. 219 (8), pp. 767–774. (2005)Google Scholar
  20. 20.
    Kaplan, H.: Mathematical modeling and simulation of high-speed cam mechanisms to minimize residual vibrations, Proc. IMechE, Part C: J Mech. Eng. Sci. 22 (13), pp. 2402–2415. (2014)Google Scholar
  21. 21.
    Qin, W.J., He, J.Q.: Optimum design of local cam profile of a valve train, Proc. IMechE, Part C: J Mech. Eng. Sci. 224 (11), pp. 2487–2492. (2010)Google Scholar
  22. 22.
    Xiao, H.S., Zu, J.W.: Cam profile optimization for a new cam drive, J. Mech. Sci. Technol. 23 (10), pp. 2592–2602. (2009)Google Scholar
  23. 23.
    Cabrera, J.A., Simon, A., Prado. M.: Optimal synthesis of mechanisms with genetic algorithms. Mechanism and machine theory. Volume 37, Issue 10, pp. 1165-1177. (2002)Google Scholar
  24. 24.
    Ottaviano, E. et all.: Numerical and experimental analysis of non-circular gears and cam- follower systems as function generators. Mech. and Mach. Theory 43 (8), pp. 996-1008. (2007).Google Scholar
  25. 25.
    Mandal, M., Naskar, T.K.: Introduction of control points in splines for synthesis of optimized cam motion program, Mech. Mach. Theory 44 (1), pp.255–271. (2009)Google Scholar
  26. 26.
    Mermelstein, S.P., Acar, M.: Optimising cam motion using piecewise polynomials, Eng. Comput. 19 (4), pp. 241–254. (2004).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.INSA-Rennes/MecaproceRennesFrance
  2. 2.LS2N-ECN UMR 6004NantesFrance

Personalised recommendations