The Effect of Using Hollow Cathode on the Tribological Behavior of Plasma Nitrided Layers.

  • Thiago de Souza LamimEmail author
  • Diego Salvaro
  • Renan Oss Giacomelli
  • Roberto Binder
  • Cristiano Binder
  • Aloisio Nelmo Klein
  • José Daniel Biasoli de Mello
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


The shape and geometry of the component play an essential role in surface plasma treatments. Certain plasma conditions can activate the hollow cathode effect (HCE) in parts with cylindrical geometry and, consequently, intensify the discharge by increasing the current density [1]. Due to this fact, a local surface over-heating can occur and cause some structural and microstructural transformation, developing columnar nitride compound layers and the appearance of braunite [2]. In this work, the tribological properties of nitride compound layers with microstructural characteristics induced by the hollow cathode effect (HCE) were evaluated. Hollow cylinders of sintered iron (7,5 mm in inner diameter and 9 mm in height) were plasma nitrided in three different conditions in order to obtain: a columnar compound layer (550 °C, 90%N2 + 9%H2 +1%CH4); a compound layer with presence of braunite (570 °C, 30%N2 + 70%H2); a compact and homogeneous compound layer with no microstructural defects (540 °C, 30%N2 + 70%H2). Pressure, output voltage and treatment time were kept constant in all treatments. The layer microstructures were analyzed by optical microscopy (OM) and the phase identification was conducted by X-ray diffraction (XRD). Reciprocating dry sliding tests were carried out to evaluate wear resistance and friction coefficient. White light interferometry was used to evaluate the surface topography and measure the wear volumes. The wear rate is affected by microstructural characteristics of the nitride layers induced by the HCE. Columnar nitride compound layer and the presence of braunite are undesired characteristics to achieve good wear resistance. Further-more, the friction coefficient was not influenced.


Plasma Nitriding Hollow Cathode Effect Wear Resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grün, R., Günther, H.J.: Plasma nitriding in industry-problems, new solutions and limits. Mater. Sci. Eng. A. 140, 435-441 (1991).Google Scholar
  2. 2.
    Göhring, H., Kante, S., Leineweber, A., Mittemeijer, E.J.: Microstructural development and crystallographic properties of decomposing Fe-N-C compound layers. Int. J. Mater. Res. 107, 203-216 (2016).Google Scholar
  3. 3.
    Bocchini, G.F., Molinari, A., Tesi, B., Bacci, T.: Ion-Nitriding of Sintered Steels - Present Situation and Perspectives. MPR. 45(11), 772-778 (1990).Google Scholar
  4. 4.
    Musil, J., Vlček, J., Růžička, M.: Recent progress in plasma nitriding. Vacuum 59, 940-951(2000).Google Scholar
  5. 5.
    Mittemeijer E.J.: Fundamentals of Nitriding and Nitrocarburizing, in: J. Dosset, G.E. Tot-ten (Eds.), ASM Handbook, ASM International, Stuttgart (2013).Google Scholar
  6. 6.
    Rembges, W., Oppel, W.: Process control of plasma nitriding and plasma nitrocarburizing in industry. Surf. Coatings Technol 59, 129-134 (1993).Google Scholar
  7. 7.
    Rie, K.T., Schnatbaum, F.: Influence of pulsed d.c.-glow-discharge on the phase constitu-tion of nitride layers during plasma nitrocarburizing of sintered materials. Mater. Sci. Eng. A. 140, 448-453 (1991).Google Scholar
  8. 8.
    Jeong, B., Kim, M.: Effects of the process parameters on the layer formation behavior of plasma nitrided steels. Surf. Coatings Technol 141, 182–186 (2001).Google Scholar
  9. 9.
    Kolobov, V.I., Tsendin, L.D.:Analytic model of the hollow cathode effect. Plasma Sources Sci. Technol 4, 551-560 (1995).Google Scholar
  10. 10.
    Pessoa, R.S., Sagás, J.C., Rodrigues, B.V.M., Galvão N.K.A.M., Fraga, M.A., Petraconi, G., Maciel H.S.: Experimental Studies on Low-Pressure Plane-Parallel Hollow Cathode Discharges. Brazilian J. Phys. 48(4), 411-420 (2018).Google Scholar
  11. 11.
    JCPDS, JCPDS - International Centre for Diffraction Data, PCPDFWIN (n.d.) Version PDF-2 (2001).Google Scholar
  12. 12.
    Nakada, N., Fukuzawa, N., Tsuchiyama, T., Takaki, S., Koyano, T., Iwamoto, T., Omori, Y.:Isothermal Transformation in Fe-N Hypereutectoid Alloy. ISIJ Int 53, 139-144 (2013).Google Scholar
  13. 13.
    Fancey, K.S., Leyland, A., Egerton, D., Torres, D., Matthews, A.: The influence of process gas characteristics on the properties of plasma nitrided steel, Surf. Coatings Technol. 76-77, 694-699 (1995).Google Scholar
  14. 14.
    Skonieski, A.F.O., Lima, E.S., Hirsch, T., Rocha A.S.: Influência da mistura gasosa em processos de nitretação e nitrocarbonetação a plasma. Rev. Bras. Apl. Vácuo 27, 175-182 (2008).Google Scholar
  15. 15.
    Ortiz, P.E.: Estudo da nitretação por plasma: correlação plasma-superfície, Universidade Federal de Santa Catarina, Florianópolis (2000). In Portguese.Google Scholar
  16. 16.
    Kim, Y.M., Kim, J.U., Han, J.G., Investigation on the pulsed DC plasma nitriding with op-tical emission spectroscopy. Surf. Coatings Technol 152, 227-232 (2002)Google Scholar
  17. 17.
    Silva, H.R.T., Egert, P., Seeber, A., Speller, C.: Effect of Methane Addition on Formation of Plasma Nitrocarburized Layers. Metallogr. Microstruct. Anal 5, 486-492 (2016).Google Scholar
  18. 18.
    Lampe, T., Eisenberg, S., Laudien, G.: Compound layer formation during plasma nitriding and plasma nitrocarburising. Surf. Eng. 9, 69-76 (1993).Google Scholar
  19. 19.
    Alves, C., Lima, J. A., Hajek, V., da Cunha,J.B.M., dos Santos, C. A: Effect of cooling rate on properties of plasma nitrided AISI 1010 steel. Surf. Coatings Technol 201, 7566-7573 (2007).Google Scholar
  20. 20.
    Wöhrle, T. :Thermodynamics and kinetics of phase transformations in the Fe-N-C system, Fakultät Chemie der Universität Stuttgart, Stuttgart (2012).Google Scholar
  21. 21.
    Mason, R.S., Pichilingi, M., Sputtering in a glow discharge ion source-pressure depend-ence: theory and experiment. J. Phys. D. Appl. Phys. 27, 2363-2371 (1994).Google Scholar
  22. 22.
    Binder, C., Bendo, T., Hammes, G., Klein, A.N., de Mello J.D.B.: Effect of nature of ni-tride phases on sliding wear of plasma nitrided sintered iron. Wear 332–333, 995-1005 (2015).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thiago de Souza Lamim
    • 1
    Email author
  • Diego Salvaro
    • 1
  • Renan Oss Giacomelli
    • 1
  • Roberto Binder
    • 2
  • Cristiano Binder
    • 1
  • Aloisio Nelmo Klein
    • 1
  • José Daniel Biasoli de Mello
    • 1
    • 2
    • 3
  1. 1.Universidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Whirlpool S/A - Unidade EmbracoJoinvilleBrazil
  3. 3.Universidade Federal de UberlândiaUberlândiaBrazil

Personalised recommendations