Modelling of a rotary hammer with the implementation of a Dynamic Eliminator of Vibrations

  • Tadeusz Majewski
  • Roberto Sanz
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


The mathematical modelling of a Dynamic Eliminator of Vibrations is presented. This model is based on two drums that rotate in opposite directions with an angular speed equal to the excitation frequency of the system. These drums contain the same amount of free elements such as rollers or spheres that translate in a viscous environment and compensate the excitation forces with the action of their centrifugal force. Also, a rotary hammer working principle is modelled with a novel method for the mathematical implementation of the DEV to this system, to determine the possibility of vibrations damping. Several systems of equations are developed and solved numerically using different input parameters. The results of these simulations where vibrations reduction is illustrated are presented throughout this work, starting from simpler models up to systems with several degrees of freedom.


rotary hammer vibrations damping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hernández, F. G. (2012) Tratado de Medicina de trabajo. Introducción a la salud laboral. Aspectos jurídicos y técnicos. (2da ed.) Barcelona: Elsevier Masson. Vol. I, p. 298; Vol. II, p. 628Google Scholar
  2. [2]
    Castro, J.M; Palacios, M. E; Paz, M; García G; Moreno, Laura (2014) Salud, Ambiente y Trabajo. (1ra ed.) México: McGraw Hill. P. 277Google Scholar
  3. [3]
    Majewski, T. (1987). Synchronous Vibration Eliminator for an Object Having One Degree of Freedom. Journal of Sound and Vibration, 112(3), 401-413Google Scholar
  4. [4]
    Majewski, T. (2010) The properties of a dynamic eliminator for vehicle vibrations. Mechanism and Machine Theory, Volume 45, Issue10, pp.1449-1461Google Scholar
  5. [5]
    Majewski, T. (2017) Vibraciones en sistemas físicos (2nd ed.) México: Alfaomega.Google Scholar
  6. [6]
    Majewski, T; Meraz, M. (2010) Compensación Automática de Fuerzas Dinámicas en Sistema Rotatorios. Automatic Compensation of Dynamical Forces in Rotating Systems. Computación y Sistemas. 2010, Vol. 13, No.3, p-p 345-360Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tadeusz Majewski
    • 1
  • Roberto Sanz
    • 1
  1. 1.Universidad de las Americas PueblaSan Andres Cholula, PueblaMexico

Personalised recommendations