Advertisement

Kinematics and Dynamics Model via Explicit Direct and Trigonometric Elimination of Kinematic Constraints

  • Moritz SchapplerEmail author
  • Torsten Lilge
  • Sami Haddadin
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The efficient implementation of kinematics and dynamics models is a key to model based control of mechatronic systems such as robots and wearable assistive devices. This paper presents an approach for the derivation of these models in symbolic form for constrained systems based on the explicit elimination of the kinematic constraints using substitution variables with trigonometric expressions and the Lagrange equations of the second kind. This represents an alternative solution to using the implicit form of the constraints or using the explicit elimination at comparable computational effort. The method is applied to a novel exoskeleton designed for craftsmen force assistance, which consists of multiple planar closed kinematic loops and gear mechanisms.

Keywords

dynamics closed-loop Lagrangian equations substitution variables explicit form trigonometric expressions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The presented work was funded by the Federal Ministry of Education and Research of Germany (BMBF) under grant number 16SV6175 and has also received funding from European Union’s Horizon 2020 research and innovation programme under grant agreement No. 688857 (“SoftPro”).

References

  1. 1.
    Wehage, R., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. Journal of mechanical design 104(1), 247–255 (1982). DOI  https://doi.org/10.1115/1.3256318
  2. 2.
    Nakamura, Y., Ghodoussi, M.: Dynamics computation of closed-link robot mechanisms with nonredundant and redundant actuators. IEEE Transactions on Robotics and Automation (1989). DOI  https://doi.org/10.1109/70.34765
  3. 3.
    Luh, J., Zheng, Y.F.: Computation of input generalized forces for robots with closed kinematic chain mechanisms. IEEE Journal on Robotics and Automation 1(2), 95–103 (1985). DOI  https://doi.org/10.1109/JRA.1985.1087008
  4. 4.
    Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proceedings: Mathematical and Physical Sciences pp. 407–410 (1992). DOI  https://doi.org/10.1098/rspa.1992.0158
  5. 5.
    Samin, J.C., Fisette, P.: Symbolic modeling of multibody systems, vol. 112. Springer Science & Business Media (2013). DOI  https://doi.org/10.1007/978-94-017-0287-4
  6. 6.
    Khalil, W., Vijayalingam, A., et al.: OpenSYMORO: An open-source software package for Symbolic Modelling of Robots. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1206–1211. Besançon, France (2014). DOI  https://doi.org/10.1109/AIM.2014.6878246
  7. 7.
    Park, F., Choi, J., Ploen, S.: Symbolic formulation of closed chain dynamics in independent coordinates. Mechanism and machine theory 34(5), 731–751 (1999). DOI  https://doi.org/10.1016/S0094-114X(98)00052-4
  8. 8.
    Khalil, W., Bennis, F.: Symbolic calculation of the base inertial parameters of closed-loop robots. The International journal of robotics research 14(2), 112–128 (1995). DOI  https://doi.org/10.1177/027836499501400202
  9. 9.
    Nülle, K., Schappler, M., et al.: Projektabschlussbericht ”3. Arm”. Tech. rep., Mechatronik Zentrum Hannover (2017). DOI  https://doi.org/10.2314/GBV:1014030161
  10. 10.
    Atkinson, L.: A simple benchmark of various math operations (2014). Online: http://www.latkin.org/blog/2014/11/09/, accessed 20.08.2018
  11. 11.
    Hindriksen, V.: How expensive is an operation on a CPU? (2012). Online: https://streamhpc.com/blog/2012-07-16/, accessed 20.08.2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Moritz Schappler
    • 1
    Email author
  • Torsten Lilge
    • 2
  • Sami Haddadin
    • 3
  1. 1.Institute for Mechatronic Systems, Leibniz University HannoverHannoverGermany
  2. 2.Institute for Automatic Control, Leibniz University HannoverHannoverGermany
  3. 3.Chair of Robotics Science and Systems Intelligence, Technical University of MunichHannoverGermany

Personalised recommendations