The Prototype of Regolith Sampling Tool Dedicated to Low Gravity Planetary Bodies

  • Karol SewerynEmail author
  • Paweł Paśko
  • Gianfranco Visentin
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


Surface sampling on small celestial bodies like moons, asteroids or comets requires sophisticated sampling technology, that will be reliable and safe for the lander stability. On the other hand sample volume demands increases, especially in the perspective of future exploitation of Moon or asteroids. To face such requirements the novel sampling tool called PACKMOON was invented and developed at CBK PAN. It’s based on rotary hammering principle and its a main advantage is the low influence to the lander and capability to acquire relatively large samples. Both aspects were confirmed by the test results shown in the paper. In addition two possible application of PACKMOON tool is presented: first related to planned sample return mission and second related to In Situ Resource Utilization activities.


Operations in microgravity environment Sampling tools Space exploration and utilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This paper was supported by European Space Agency (ESA) project no. 4000112603/12/NL/CBi.


  1. 1.
    Crawford, I. A.: Lunar resources: A review. Progress in Physical Geography 39(2), 137-167 (2015).Google Scholar
  2. 2.
    Michel, P., DeMeo, F. E., Bottke, W. F.: Asteroids IV, University of Arizona Press, Tucson, (2015).Google Scholar
  3. 3.
    Spohn, T., et al.,: Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko. Science, 349 (6247), (2015).Google Scholar
  4. 4.
    Kofman W., et al.: Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar; Science, 349 (6247), (2015).Google Scholar
  5. 5.
    Linne, D. L., Sanders, G. B., Connecting Projects to Complete the In Situ Resource Utilization Paradigm. Planetary & Terrestrial Mining and Sciences Symposium / Space Resource Roundtable, Montreal, (2017).Google Scholar
  6. 6.
    Skonieczny, K, Lightweight Robotic Excavation. Carnegie Mellon University, PhD thesis, (2013).Google Scholar
  7. 7.
    Seweryn K.: The new concept of sampling device driven by rotary hammering actions. IEEE/ASME Transactions on Mechatronic systems 21(5), 2477-2489 (2016).Google Scholar
  8. 8.
    Wolski L., Matelski W., Seweryn K., Paśko P.: Supercapacitors based driving system for space fast surface sample acquisition system. Przegląd Elektrotechniczny 5/2018, 153-158 (2018)Google Scholar
  9. 9.
    P. Paśko, et al.: Regolith Sampling and Deep Drilling in Low Gravity Environment, Proceedings of I-SAIRAS conference, Beijing, China, (2016)Google Scholar
  10. 10.
    Seweryn, K., Grygorczuk, J., Wawrzaszek, R., Banaszkiewicz, M., Rybus, T., and Wiśniewski, Ł. Low velocity penetrators (LVP) driven by hammering action – definition of the principle of operation based on numerical models and experimental tests. Acta Astronautica 99, 303-317 (2014).Google Scholar
  11. 11.
    Seweryn, K., Skocki, K., Banaszkiewicz, M., Grygorczuk, J., Kolano, M., Kuciński, T., Mazurek, J., Morawski, M., Białek, A., Rickman, H., Wawrzaszek, R.: Determining the geotechnical properties of planetary regolith using Low Velocity Penetrometers. Planetary and Space Sciences 99, 70-83 (2014).Google Scholar
  12. 12.
    Paśko, P., Seweryn, K., Kłak, M., Teper, W., Visentin, G., Żyliński, B., Novel Sampling Tool for Low Gravity Planetary Bodies. Proceedings of ASTRA conference, ESA ESTEC, The Netherlands, (2017)Google Scholar
  13. 13.
    Rybus T., Seweryn K.: Planar air-bearing microgravity simulators: review of applications, existing solutions and design parameters. Acta Astronautica 120, 239–259 (2016)Google Scholar
  14. 14.
    Kozlov, O. E., and Kozlova, T. O.: Manipulators of the Phobos-Grunt project and Lunar projects. in Sasiadek J., (eds.) GeoPlanet: Earth and Planetary Sciences, pp. 163 - 174, Springer, (2015).Google Scholar
  15. 15.
    Wright, I. P.; Sheridan, S.; Morse, A. D.; Barber, S. J.; Merrifield, J. A.; Waugh, L. J.; Howe, C. J.; Gibson, E. K. and Pillinger, C. T.: L-VRAP-a lunar volatile resources analysis package for lunar exploration. Planetary and Space Science 74(1), 254-263 (2010).Google Scholar
  16. 16.
    Managadze, G. G.; Wurz, P.; Sagdeev, R. Z.; Chumikov, A. E.; Tuley, M.; Yakovleva, M.; Managadze, N. G.; Bondarenko, A. L.: Study of the main geochemical characteristics of Phobos’ regolith using laser time-of-flight mass spectrometry. Solar System Research 44, 376-384 (2010).Google Scholar
  17. 17.
    Blair, B. R., Diaz, J., Duke M. B., Space Resource Economic Analysis Toolkit: The Case for Commercial Lunar Ice Mining. Final Report to the NASA Exploration Team. Colorado School of Mines, (2002).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Karol Seweryn
    • 1
    Email author
  • Paweł Paśko
    • 1
  • Gianfranco Visentin
    • 2
  1. 1.Space Research Centre PAS (CBK PAN)WarsawPoland
  2. 2.European Space Agency (ESA/ESTEC)NoordwijkNetherlands

Personalised recommendations