Advertisement

Arm Manipulation Planning of Tethered Tools with the Help of a Tool Balancer

  • Daniel SánchezEmail author
  • Weiwei Wan
  • Kensuke Harada
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

Robotic manipulation of tethered tools is widely seen in robotic work cells. They may cause excess strain on the tool’s cable or undesired entanglements with the robot’s arms. This paper presents a manipulation planner with cable orientation constraints for tethered tools suspended by tool balancers. The planner uses orientation constraints to limit the bending of the balancer’s cable while the robot manipulates a tool and places it in a desired pose. The constraints reduce entanglements and decrease the torque induced by the cable on the robot joints. Simulation and real-world experiments show that the constrained planner can successfully plan robot motions for the manipulation of suspended tethered tools preventing the robot from damaging the cable or getting its arms entangled, potentially avoiding accidents. The planner is expected to play promising roles in manufacturing cells.

Keywords

Manipulation planning Constraints Wired tools 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bretl, T., McCarthy, Z.: Quasi-static manipulation of a kirchhoff elastic rod based on a geometric analysis of equilibrium configurations. The International Journal of Robotics Research 33(1), 48–68 (2014)Google Scholar
  2. 2.
    Calandra, R., Owens, A., Jayaraman, D., Lin, J., Yuan, W., Malik, J., Adelson, E.H., Levine, S.: More than a feeling: Learning to grasp and regrasp using vision and touch. arXiv preprint arXiv:1805.11085 (2018)Google Scholar
  3. 3.
    Cheng, X.: On-line collision-free path planning for service and assembly tasks by a two-arm robot. In: Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on, vol. 2, pp. 1523–1528. IEEE (1995)Google Scholar
  4. 4.
    Dogar, M., Spielberg, A., Baker, S., Rus, D.: Multi-robot grasp planning for sequential assembly operations. In: Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp. 193–200. IEEE (2015)Google Scholar
  5. 5.
    Hert, S., Lumelsky, V.: The ties that bind: Motion planning for multiple tethered robots. Robotics and autonomous systems 17(3), 187–215 (1996)Google Scholar
  6. 6.
    Hogan, F.R., Bauza, M., Canal, O., Donlon, E., Rodriguez, A.: Tactile regrasp: Grasp adjustments via simulated tactile transformations. arXiv preprint arXiv:1803.01940 (2018)Google Scholar
  7. 7.
    Hou, Y., Jia, Z., Mason, M.T.: Fast planning for 3d any-pose-reorienting using pivoting. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1631–1638. IEEE (2018)Google Scholar
  8. 8.
    Igarashi, T., Stilman, M.: Homotopic path planning on manifolds for cabled mobile robots. In: Algorithmic Foundations of Robotics IX, pp. 1–18. Springer (2010)Google Scholar
  9. 9.
    Khalil, F.F., Payeur, P.: Dexterous robotic manipulation of deformable objects with multi-sensory feedback-a review. In: Robot Manipulators Trends and Development. InTech (2010)Google Scholar
  10. 10.
    Lozano-Pérez, T., Jones, J.L., O’Donnell, P.A., Mazer, E.: Handey: a robot task planner (1992)Google Scholar
  11. 11.
    Mirabel, J., Lamiraux, F.: Manipulation planning: addressing the crossed foliation issue. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp. 4032–4037. IEEE (2017)Google Scholar
  12. 12.
    Pérez-D’Arpino, C., Shah, J.A.: C-learn: Learning geometric constraints from demonstrations for multi-step manipulation in shared autonomy. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp. 4058–4065. IEEE (2017)Google Scholar
  13. 13.
    Pham, H., Pham, Q.C.: Robotic manipulation of a rotating chain. IEEE Transactions on Robotics 34(1), 139–150 (2018)Google Scholar
  14. 14.
    Ramirez-Alpizar, I.G., Naveau, M., Benazeth, C., Stasse, O., Laumond, J.P., Harada, K., Yoshida, E.: Motion generation for pulling a fire hose by a humanoid robot. In: Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on, pp. 1016–1021. IEEE (2016)Google Scholar
  15. 15.
    Saha, M., Isto, P.: Motion planning for robotic manipulation of deformable linear objects. In: Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp. 2478–2484. IEEE (2006)Google Scholar
  16. 16.
    Sanchez, D., Wan, W., Harada, K., Kanehiro, F.: Regrasp planning considering bipedal stability constraints. arXiv preprint arXiv:1810.06128 (2018)Google Scholar
  17. 17.
    Seo, H., Kim, S., Kim, H.J.: Locally optimal trajectory planning for aerial manipulation in constrained environments. In: Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pp. 1719–1724. IEEE (2017)Google Scholar
  18. 18.
    Stoeter, S.A., Voss, S., Papanikolopoulos, N.P., Mosemann, H.: Planning of regrasp operations. In: Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, vol. 1, pp. 245–250. IEEE (1999)Google Scholar
  19. 19.
    Tournassoud, P., Lozano-Pérez, T., Mazer, E.: Regrasping. In: Robotics and Automation. Proceedings. 1987 IEEE International Conference on, vol. 4, pp. 1924–1928. IEEE (1987)Google Scholar
  20. 20.
    Wan, W., Harada, K.: Reorientating objects with a gripping hand and a table surface. In: Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on, pp. 101–106. IEEE (2015)Google Scholar
  21. 21.
    Wan, W., Harada, K.: Developing and comparing single-arm and dual-arm regrasp. IEEE Robotics and Automation Letters 1(1), 243–250 (2016)Google Scholar
  22. 22.
    Zhu, J., Navarro, B., Fraisse, P., Crosnier, A., Cherubini, A.: Dual-arm robotic manipulation of exible cables. In: IROS: International Conference on Intelligent Robots and Systems (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Osaka UniversitySuitaJapan

Personalised recommendations