Advertisement

Design Parameter Space of Planar Four-bar Linkages

  • M. John D. Hayes
  • Mirja Rotzoll
  • Manfred L. Husty
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

A new algebraic input-output relation for planar four-bar mechanisms is a quartic curve in the input-output joint angle parameter plane. This equation contains four terms with quadratic coefficients of link lengths which all factor into the product of two linear terms. The structure of these eight linear factors suggests that they are the eight faces of an octahedron in a design parameter space of the link lengths. In this paper we show that the design parameter octahedron space implies a complete classification scheme for all 27 possible planar 4R mechanisms, in addition to linkages containing one, or two prismatic joints.

Keywords

Algebraic input-output relation planar four-bar linkage design parameter octahedron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ceccarelli, M., Editor: Distinguished Figures in Mechanism and Machine Science, Their Contributions and Legacies Part 1. Springer, New York, U.S.A. (2007)Google Scholar
  2. 2.
    Coxeter, H.S.M.: Projective Geometry, second edition. University of Toronto Press, Toronto, On., Canada (1974)Google Scholar
  3. 3.
    Freudenstein, F.: “An Analytical Approach to the Design of Four-link Mechanisms.”. Trans. ASME vol 77, pages 483–492 (1954)Google Scholar
  4. 4.
    Freudenstein, F.: Design of four-link mechanisms. Ph.D. thesis, Columbia University, New York, N.Y., USA (1954)Google Scholar
  5. 5.
    Gans, D.: Transformations and Geometries. Appelton-Century-Crofts, New York, N.Y., U.S.A. (1969)Google Scholar
  6. 6.
    Guigue, A., Hayes, M.J.D.: “Continuous Approximate Synthesis of Planar Function-generators Minimising the Design Error”. Mechanism and Machine Theory vol 101, pages 158–167,  https://doi.org/10.1016/j.mechmachtheory.2016.03.012 (2016)
  7. 7.
    Hayes, M.J.D., Husty, M.L., Pfurner., M.: “Input-output Equation for Planar Four-bar Linkages”. pp. 12–19. 16th Advances in Robotic Kinematics, eds. Lenarčič, J. and Parenti-Castelli, V., Springer, New York (2018)Google Scholar
  8. 8.
    Husty, M.L., Pfurner, M.: “An Algebraic Version of the Input-Output Equation of Planar Four-Bar Mechanisms”. pp. 746–757. International Conference on Geometry and Graphics, Milan, Italy (2018)Google Scholar
  9. 9.
    J.M. McCarthy, G.S.S.: Geometric Design of Linkages, 2nd Edition Interdiciplinaty Applied Mathematics. Springer, New York, N.Y. (2011)Google Scholar
  10. 10.
    Klein, F.: Elementary Mathematics from an Advanced Standpoint: Geometry. Dover Publications, Inc., New York, N.Y., U.S.A. (1939)Google Scholar
  11. 11.
    Murray, A.P., Larochelle, P.M.: “A Classification Scheme for Planar 4R, Spherical 4R, and Spatial RC C R Linkages to Facilitate Computer Animation”. Proceedings of 1998 ASME Design Engineering Technical Conferences (DETC’98), Atlanta, Georgia, U.S.A. (September 13-16, 1998)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. John D. Hayes
    • 1
  • Mirja Rotzoll
    • 1
  • Manfred L. Husty
    • 2
  1. 1.Department of Mechanical and Aerospace EngineeringCarleton UniversityOttawaCanada
  2. 2.Unit Geometry and CADUniversity of InnsbruckInnsbruckAustria

Personalised recommendations