Advertisement

Certified Kinematics Solution of 2-DOF Planar Parallel Continuum Mechanisms

  • Oscar Altuzarra
  • Jean Pierre MerletEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

Kinematics position problems in planar parallel continuum mechanisms, whose elements are elastic rods undergoing nonlinear large deformations, are ruled by a system of nonlinear differential equations. Under some conditions, those rods can be modelled as Kirchhoff rods whose equations can be solved using elliptic integrals. The resolution has to be numerical, and two approaches for that goal are shown in this paper. On the one hand, a method based in residuals evaluation finds multiple solutions at good computational rates but with no formal guarantee on the solving of all solutions. On the other hand, a procedure based on Interval Analysis constitutes a certified solution at a higher computational cost that can be improved with a Newton scheme.

Keywords

Kirchhoff rods Kinematics numerical solver interval analysis elliptic integrals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors received financial support from the Spanish Government (DPI2015-64450-R) and the Regional Government of the Basque Country (Project IT949-16).

References

  1. 1.
    Wenger, P., Chablat, D.: Definition sets for the direct kinematics of parallel manipulators. ICAR97. Proceedings., 8th International Conference on Advanced Robotics, pp. 859864. IEEE, (1997) DOI: https://doi.org/10.1109/ICAR.1997.620282
  2. 2.
    Bryson, C.E., Rucker, D.C.: Toward Parallel Continuum Manipulators. Proc. IEEE Int. Conf. Robot. Autom., May 2014, pp. 778-785 (2014). doi: https://doi.org/10.1109/ICRA.2014.6906943
  3. 3.
    Till, J.. Bryson, C.E., Chung, S., Orekhov, A., Rucker, D.C.: Efficient Computation of Multiple Coupled Cosserat Rod Models for Real-Time Simulation and Control of Parallel Continuum Manipulators. Proc. IEEE Int. Conf. Robot. Autom., May 2015, pp. 5067-5074 (2015). doi: https://doi.org/10.1109/ICRA.2015.7139904
  4. 4.
    Altuzarra, O., Caballero, D., Campa, F.J., Pinto, Ch.: Position analysis in planar parallel continuum mechanisms. Mechanism and Machine Theory, 132, pp. 13-29, (2019).  https://doi.org/10.1016/j.mechmachtheory.2018.10.014
  5. 5.
    Howell, L.L.: Compliant Mechanisms. Wiley, New York. (2001)Google Scholar
  6. 6.
    Holst, G. L. et al.: Modelling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms. Journal of Mechanical Design, vol. 133, 051002-1–10 (2011)Google Scholar
  7. 7.
    Zhang, A., Chen, G.: A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms. Journal of Mechanisms. 5, pp. 021006-1-10. (2013). doi: https://doi.org/10.1115/1.4023558
  8. 8.
    Hansen, E.: Global optimization using interval analysis. Marcel Dekker. (2004)Google Scholar
  9. 9.
    Jaulin, L. and Kieffer, M. and Didrit, O. and Walter, E.: Applied Interval Analysis. Springer-Verlag. (2001)Google Scholar
  10. 10.
    Antman S.S.: Nonlinear Problems of Elasticity. Springer (2005) ISBN: 0-387-20880-1.Google Scholar
  11. 11.
    Merlet, J-P.: Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis. Int. J. of Robotics Research, vol. 23, 3, pp. 221-236, (2004).  https://doi.org/10.1177/0278364904039806
  12. 12.
    Tapia, R.A.: The Kantorovitch theorem for Newton’s method. American Mathematic Monthly. vol. 78, 1.ea, pp. 389-392, (1971)DOI: https://doi.org/10.2307/2316909

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of the Basque Country UPV/EHUBilbaoSpain
  2. 2.HEPHAISTOS project, Université Cȏte d’Azur, INRIASophia-AntipolisFrance

Personalised recommendations