Advertisement

Kinematic Analysis and Dimensional Synthesis of a Novel 3-DOF Parallel Mechanism

  • Jintao LiEmail author
  • Chenglin Dong
  • Shunzhou Huang
  • Huihui Zhao
  • Xianlei Shan
  • Haitao Liu
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

This paper presents the kinematic performance analysis of a R(2-RPR)U&UP parallel mechanism that is composed of a planar linkage plus a spatial limb. The dimensional synthesis of the parallel mechanism is carried out by defining two different workspace that enables to achieve a nearly axial symmetry of kinematic performance. A set of homogeneous dimensionless parameters are optimized by minimizing two global performance indices represented by the mean value and standard deviation of the condition number of Jacobian. It shows that for the first definition of workspace the mechanism achieves better kinematic performance.

Keywords

Parallel mechanism Workspace analysis Dimensional synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This research is supported by National Defense Basic Scientific Research program of China (Grant No. JCKY2017203B066) and National Natural Science Foundation of China (Grant No. 51622508).

References

  1. 1.
    Uriarte, L., Zatarain, M., Axinte, D., et al.: Machine tools for large parts. CIRP Ann. Manuf. Technol. 62(2), 731-750 (2013).Google Scholar
  2. 2.
    Neumann, K. E.: Tricept application. In: Proceedings-3rd chemnitz parallel kinematics seminar, pp. 547-551. Verlag Wissenschafrliche Scripten, Zwickau, Germany (2002).Google Scholar
  3. 3.
    Neumann, K. E.: Exechon concept. Parallel Kinematic Mach. Res. Practice 33, 787-802 (2006).Google Scholar
  4. 4.
    Huang, T., Dong, C. L., et al.: A simple and visually orientated approach for type synthesis of overconstrained 1T2R parallel mechanisms. Robotica, 1-13 (2018).Google Scholar
  5. 5.
    Jin, Y., Bi, Z. M., Liu, H. T., Higgins, C., Price, M., Chen, W. H., Huang, T.: Kinematic Analysis and Dimensional Synthesis of Exechon Parallel Kinematic Machine for Large Volume Machining. J. Mech. Robot. 7(4), 1-13 (2015).Google Scholar
  6. 6.
    Zhang, D., Gosselin, C. M.: Kinetostatic analysis and design optimization of the Tricept machine tool family. ASME J. Manuf. Sci. Eng. 124(3), 725-733 (2002).Google Scholar
  7. 7.
    Bi, Z. M., Jin, Y., et al.: Optimal design of a new parallel kinematic machine for large volume machining. In: Advances in Reconfigurable Mechanism and Robots I, pp. 343-354. Springer, Tianjin, China (2012).Google Scholar
  8. 8.
    Liu, H. T., Huang, T., et al.: Optimal design of the TriVariant robot to achieve a nearly axial symmetry of kinematic performance. Mech. Mach. Theory 42(12), 1643-1652 (2007).Google Scholar
  9. 9.
    Huang, T., Liu, H., Chetwynd, D. G.: Generalized Jacobian analysis of lower mobility manipulators. Mech. Mach. Theory 46(6), 831-844 (2011).Google Scholar
  10. 10.
    Liu, H. T., Huang, T., Chetwynd, D. G.: A method to formulate a dimensionally homogeneous Jacobian of parallel manipulators. IEEE Trans. Rob. 27(1), 150-156 (2011).Google Scholar
  11. 11.
    Merlet, J.-P.: Jacobian, manipulability, condition number, and accuracy of parallel robots. ASME Mech. Des. 128(1), 199-206 (2006).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jintao Li
    • 1
    Email author
  • Chenglin Dong
    • 1
  • Shunzhou Huang
    • 2
  • Huihui Zhao
    • 2
  • Xianlei Shan
    • 1
  • Haitao Liu
    • 1
  1. 1.Key Laboratory of Mechanism Theory and Equipment Design, Ministry of EducationTianjin UniversityTianjinChina
  2. 2.Shanghai Aerospace Equipments Manufacturer Co., LtdShanghaiChina

Personalised recommendations