Advertisement

Redundancy Resolution Schemes for Kinematically Redundant Parallel Manipulators

  • Maira Martins da SilvaEmail author
  • João Cavalcanti Santos
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

Kinematic redundancy may be an alternative for enlarging the workspace and for improving the dynamic performance of parallel manipulators. It can be implemented by the introduction of an extra active joint in an active kinematic chain. Kinematically redundant parallel manipulators require redundancy resolution schemes since their inverse kinematic problem presents infinite solutions. These schemes can be posed as an optimization problem that can be solved locally or globally. These works compare experimental results of two global redundancy resolution schemes applied to a three-level kinematically redundant parallel manipulator. The same cost function and weighting factors have been exploited for evaluating the required currents to the execution of a predefined task.

Keywords

parallel kinematic machines redundancy resolution schemes kinematic redundancy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by FAPESP 2014/01809-0 and 2018/21336-0. Moreover, J.C. Santos is thankful for his grant, FAPESP 2014/21946-2.

References

  1. 1.
    da Silva, M.M., de Oliveira, L.P., Bruls, O., Michelin, M., Baradat, C., Tempier, O., Caigny, J.D., Swevers, J., Desmet, W., Brussel, H.V.: Integrating structural and input design of a 2-dof high-speed parallel manipulator: A flexible model-based approach. Mechanism and Machine Theory 45(11), 1509 – 1519 (2010). doi http://dx.doi.org/10.1016/j.mechmachtheory.2010.07.002
  2. 2.
    Fontes, J.V., da Silva, M.M.: On the dynamic performance of parallel kinematic manipulators with actuation and kinematic redundancies. Mechanism and Machine Theory 103, 148–166 (2016). doi  https://doi.org/10.1016/j.mechmachtheory.2016.05.004
  3. 3.
    Ruiz, A.G., Santos, J.C., Croes, J., Desmet, W., da Silva, M.M.: On redundancy resolution and energy consumption of kinematically redundant planar parallel manipulators. Robotica 36(06), 809–821 (2018). doi  https://doi.org/10.1017/s026357471800005x
  4. 4.
    Muller, A.: On the Terminology for Redundant Parallel Manipulators. In: Volume 2: 32nd Mechanisms and Robotics Conference, vol. 2, pp. 1121–1130. ASME, Brooklyn, New York, USA (2008). doi  https://doi.org/10.1115/detc2008-49112
  5. 5.
    Siciliano, B.: Kinematic control of redundant robot manipulators: A tutorial. Journal of lntelligent and Robotic Systems 3(3), 201–212 (1990). doi  https://doi.org/10.1007/BF00126069
  6. 6.
    Ahuactzin, J.M., Gupta, K.K.: The kinematic roadmap: a motion planning based global approach for inverse kinematics of redundant robots. IEEE Transactions on Robotics and Automation 15(4), 653–669 (1999). doi  https://doi.org/10.1109/70.781970
  7. 7.
    Boudreau, R., Nokleby, S.: Force optimization of kinematically-redundant planar parallel manipulators following a desired trajectory. Mechanism and Machine Theory 56, 138–155 (2012). doi  https://doi.org/10.1016/j.mechmachtheory.2012.06.001
  8. 8.
    Kotlarski, J., Thanh, T.D., Heimann, B., Ortmaier, T.: Optimization strategies for additional actuators of kinematically redundant parallel kinematic machines. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp. 656–661. Anchorage, AK, USA (2010). doi  https://doi.org/10.1109/robot.2010.5509982
  9. 9.
    de Carvalho Fontes, J.V., Santos, J.C., da Silva, M.M.: Numerical and experimental evaluation of the dynamic performance of kinematically redundant parallel manipulators. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40(3) (2018). doi  https://doi.org/10.1007/s40430-018-1072-1
  10. 10.
    Santos, J.C., da Silva, M.M.: Redundancy resolution of kinematically redundant parallel manipulators via differential dynamic programing. Journal of Mechanisms and Robotics 9(4), 041,016 (2017). doi  https://doi.org/10.1115/1.4036739
  11. 11.
    Bellman, R.: Dynamic Programming. Dover Publications (2003)Google Scholar
  12. 12.
    Alba-Gomez, O., Wenger, P., Pamanes, A.: Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion. In: Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B, vol. 2005, pp. 765–774. ASME (2005). doi  https://doi.org/10.1115/detc2005-84326

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maira Martins da Silva
    • 1
    Email author
  • João Cavalcanti Santos
    • 2
  1. 1.São Carlos School of EngineeringUniversity of São PauloSão CarlosBrazil
  2. 2.CNRS/LIRMMMontpellierFrance

Personalised recommendations