Novel Actuation Design of an Active Elbow Orthosis

  • E.-C Lovasz
  • C. SticlaruEmail author
  • C. Suciu
  • C. M. Gruescu
  • M. Ceccarelli
  • I. Maniu
  • C. E. Moldovan
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


The rehabilitation of limbs is achieved with the assistance of a large range of devices. A novel solution of elbow active orthosis is described regard-ing the structure, calculus and design of the exoskeleton. The solution is based on a mechanism with gears and linkages with linear actuation, which ensures linear transmission function, singularity free and light construction.


Upper limb rehabilitation Elbow orthosis Mechanism with gears and linkages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maciejasz, P., Eschweiler J., Gerlach-Hahn K., Jansen-Troy A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 11:3 (2014).Google Scholar
  2. 2.
    Cheng, HS., Ju, MS., Lin, CCK.: Improving elbow torque output of stroke patients with assistive torque controlled by EMG signals. J Biomech Eng.125(6):881–886 (2003).Google Scholar
  3. 3.
    Cozens, JA.: Robotic assistance of an active upper limb exercise in neurologically im-paired patients. Rehabil Eng, IEEE Trans.7(2):254–256 (1999).Google Scholar
  4. 4.
    Kiguchi, K., Esaki, R., Tsuruta, T., Watanabe, K., Fukuda, T.: An exoskeleton system for elbow joint motion rehabilitation. In: Proc. IEEE/ASME International Conference on Ad-vanced Intelligent Mechatronics (AIM) Port Island, Japan, 1228–1233. vol.2.( 2003).Google Scholar
  5. 5.
    Sulzer, JS., Peshkin, MA., Patton, JL.: Design of a Mobile, Inexpensive Device for Upper Extremity Rehabilitation at Home. In: Proc. IEEE 10th International Conference on Reha-bilitation Robotics (ICORR) Noordwijk, Netherlands, 933–937 (2007).Google Scholar
  6. 6.
    Oda, K., Isozumi, S., Ohyama, Y., Tamida, K., Kikuchi, T., Furusho, J.: Development of isokinetic and iso-contractile exercise machine MEM-MRB using MR brake. In: Proc. IEEE Int. Conf. on Rehabilitation Robotics (ICORR) Kyoto, Japan, 6–11 (2009).Google Scholar
  7. 7.
    Song, R., Yu Tong, K., Hu, X., Li, L.: Assistive control system using continuous myoelec-tric signal in robot-aided arm training for patients after stroke. IEEE Trans Neural Syst Rehabil Eng. 16(4):371–379 (2008).Google Scholar
  8. 8.
    Mavroidis, C., Nikitczuk, J., Weinberg, B., Danaher, G., Jensen, K., Pelletier, P., Prugnarola, J., Stuart, R., Arango, R., Leahey, M., Pavone, R., Provo, A., Yasevac, D.: Smart portable rehabilitation devices. J Neuroeng Rehabil. 2:18(2005).Google Scholar
  9. 9.
    Pylatiuk, C., Kargov, A., Gaiser, I., Werner, T., Schulz, S., Bretthauer, G.: Design of a flexible fluidic actuation system for a hybrid elbow orthosis. In: Proc. IEEE International Conference on Rehabilitation Robotics (ICORR) Kyoto, Japan, 167–171 (2009).Google Scholar
  10. 10.
    Vanderniepen, I., Van Ham, R., Van Damme, M., Versluys, R., Lefeber, D.: A powered elbow orthosis using compliant actuation. In: Proc. IEEE International Conference on Re-habilitation Robotics (ICORR) Kyoto, Japan, Orthopaedic rehabilitation. 172–177 (2009).Google Scholar
  11. 11.
    Yagin, N.: Apparatus for Facilitating Walking. U.S. Patent 440,684 (1890).Google Scholar
  12. 12.
    Kelly, L.C.: Pedomotor. U. S. Patent 1,308,675, (1919).Google Scholar
  13. 13.
    *** Hardiman I Prototype Project, General Electric Company, (1969).Google Scholar
  14. 14.
    Mavroidis, C., et al.: Smart portable rehabilitation devices. Journal of NeuroEngineering and Rehabilitation, 2:18 1-15 (2005).Google Scholar
  15. 15.
    Ripel, T., Krejsa, J., Hrbacek, J., Cizmar, I.: Active Elbow Orthosis. International Journal of Advanced Robotic Systems, 11:143 1-10 (2014).Google Scholar
  16. 16., last accessed Dec. 2018
  17. 17.
    Saremi, H., Chamani, V., Vahab-Kashani, R.: A Newly Designed Tennis Elbow Orthosis With a Traditional Tennis Elbow Strap in Patients With Lateral Epicondylitis. Trauma Mon. 21(3) 1-8 (2016).Google Scholar
  18. 18.
    Safonov, A.: Development of a wearable elbow orthosis. Master thesis, Department of Electrical Power Engineering and Mechatronics, Tallin University of Technology 1-80 (2017).Google Scholar
  19. 19.
    Vanderniepen, I., Van Ham, R., Van Damme, M., Lefeber, D.: Design of a powered elbow orthosis for orthopaedic rehabilitation using compliant actuation. In: Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics Scottsdale 1-6 (2008).Google Scholar
  20. 20.
    Schulz, S, Pylatiuk, C., Kargov, A., Gaiser, I., Schill, O., Reischl, M., Eck, U., Rupp, R.: Design of a Hybrid Powered Upper Limb Orthosis. In: IFMBE Proceedings 1-4 (2010).Google Scholar
  21. 21.
    Lovasz, E.-C., Modler, K.-H., Pop, C., Pop, F., Mărgineanu D.T., Maniu, I.: Type Synthe-sis and Analysis of Geared Linkages with Linear Actuation, Mechanika, 24(1), 108-114 (2018).Google Scholar
  22. 22.
    Lovasz, E.-C., Margineanu, D.T., Ciupe, V., Maniu, I. Gruescu, C.M., Zabava, E.S., Stan, S.D.: Design and control solutions for haptic elbow exoskeleton module used in space tel-erobotics, Mechanism and Machine Theory, 107, 384-398 (2017).Google Scholar
  23. 23.
    Modler K.-H., Lovasz E.-C., Perju D., Hollmann Ch.: Geared Linkages with Linear Dis-placement Actuator Used as Function Generating Mechanisms, 11th World Congress in Mechanism and Machine Science, Tianjin 3, 1254-1259 (2004).Google Scholar
  24. 24.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • E.-C Lovasz
    • 1
  • C. Sticlaru
    • 1
    Email author
  • C. Suciu
    • 1
  • C. M. Gruescu
    • 1
  • M. Ceccarelli
    • 2
  • I. Maniu
    • 1
  • C. E. Moldovan
    • 1
  1. 1.Department of MechatronicsUniversity Politehnica TimisoaraTimisoaraRomania
  2. 2.Laboratory of Robotics and MechatronicsUniversity of CassinoCassinoItaly

Personalised recommendations