Theoretical and experimental verification of one stage cycloidal gearbox efficiency
Abstract
The article presents a theoretical efficiency calculation of a one stage cycloidal gearbox and its experimental verification on the testing bench. The methodology of numerical calculation is presented in the first part of the article. The gearbox power loss was divided into separate parts, and its presentation on a percentage share plot shows components with the highest influence on the efficiency. A comparison of experimental and theoretical results for different values of the velocity on load is presented in the second part. To be able to compare the results from theoretical calculations with experimental results, all working conditions during the test of the gearbox were set to identical values from calculations, i.e. oil used, the level of the oil, braking torque, input velocities, and constant temperature.
Keywords
cycloidal gearbox theoretical efficiency efficiency measurementsPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgment
The authors acknowledge for cooperation and financial support of Airbus Helicopters.
References
- 1.Kudryavtsev, V. N.:, Palnetary transmision (in Russian). Mech. Eng., Leningrad (1966).Google Scholar
- 2.Chmurawa, M.: Cycloidal gears with tooth modification (in Polish: Obiegowe przekładnie cykloidalne z modyfikacją zazębienia). Silesian Technical University, Zeszyty naukowe, Nr 1547 (2002).Google Scholar
- 3.Litvin, F. L., Feng, P.H.: Computerized design and generation of cycloidal gearings, Mechanism and Machine Theory 31 (7), pp. 891–911 (1996).Google Scholar
- 4.Blanche, J. G., Yang, D. C. H.,: Cycloid drives with machining tolerances. Journal of Mechanisms, Transmissions and Automation in Design 111(3), pp. 337–344 (1989)Google Scholar
- 5.Meng, Y., Wu, C., Ling, L.: Mathematical modeling of the transmission performance of 2K-H pin cycloid planetary mechanism. Mechanism and Machine Theory 42(7), pp. 776–790 (2007).Google Scholar
- 6.Shung, J. B., Pennock, G. R.: Geometry for trochoidal-type machines with conjugate envelopes. Mechanism and Machine Theory 29(1), pp. 25–42 (1994).Google Scholar
- 7.Yan, H. S., Lai, T. S.: Geometry design of an elementary planetary gear train with cylindrical tooth-profiles. Mechanism and Machine Theory 37(8), pp. 757–767 (2002).Google Scholar
- 8.Blagojevic, M., Marjanovic, N., Djordjevic, Z., Stojanovic, B., Disic A.: A New Design of a Two-Stage Cycloidal Speed Reducer. Journal of Mechanical Design 133(8), pp. 085001 (2011).Google Scholar
- 9.Shin, J. H., Kwon, S. M.: On the lobe profile design in a cycloid reducer using instant velocity center. Mechanism and Machine Theory 41(5), pp. 596–616 (2006).Google Scholar
- 10.Hwang, Y.-W., Hsieh, C.-F.: Geometric Design Using Hypotrochoid and Nonundercutting Conditions for an Internal Cycloidal Gear. Journal of Mechanical Design 129(4), pp. 413 (2007).Google Scholar
- 11.Hwang, Y. W., Hsieh, C. F.: Determination of surface singularities of a cycloidal gear drive with inner meshing. Mathematical and Computer Modeling. 45(3-4), pp. 340–354 (2007).Google Scholar
- 12.Chen, B., Zhong, H., Liu, J., Li, C., Fang, T.: Generation and investigation of a new cycloid drive with double contact. Mechanism and Machine Theory 49, pp. 270–283 (2012).Google Scholar
- 13.Malhotra, S. K., Parameswaran, M. A.: Analysis of a cycloid speed reducer. Mechanism and Machine Theory 18(6), pp. 491–499 (1983).Google Scholar
- 14.Del Castillo J. M.: The analytical expression of the efficiency of planetary gear trains. Mechanism and Machine Theory 37(2), pp. 197–214 (2002).Google Scholar
- 15.Sensinger, J. W.: Efficiency of High-Sensitivity Gear Trains, Such as Cycloid Drives. Journal of Mechanical Design 135(7), pp. 71006 (2013).Google Scholar
- 16.Spałek, J., Knapczyk, H., Masły, S., Wilk, A.: Analiza w pływu smarowania na straty mocy w układzie przeniesienia napędu pojazdu gąsienicowego. Szybkobieżne Pojazdy Gąsienicowe 19(1) (2004).Google Scholar
- 17.Olejarczyk, K.; Wikło, M.; Król, K.; Kołodziejczyk, K.; Nowak, R.: Experimental impact studies of the application mineral oil and synthetic oil on the efficiency of the single-gear cycloidal. Tribologia 1, pp. 067–073 (2017).Google Scholar
- 18.Diab, Y., Ville, F., Velex, P.: Prediction of power losses due to tooth friction in gears. Tribolology Transactions 49(2), pp. 260-270 (2006).Google Scholar
- 19.Fernandes, C. M. C. G., Marques, P. M. T., Martins, R. C., Seabra, J. H. O.: Gearbox power loss. Part III: Application to a parallel axis and a planetary gearbox. Tribology Interbational 88, pp. 317–326 (2015).Google Scholar
- 20.Johnson, M. L.: Gearbox Efficiency and Lubrication. Sumitomo Drive Technology (2009).Google Scholar
- 21.Mačkić, T., Mirko, B., Živko, B., Nenad, K.: Influence of design parameters on cyclo drive efficiency. Journal of the Balkan Tribological Association19(4), pp. 497–507 (2013)Google Scholar
- 22.Olejarczyk, K.; Wikło, M.; Król, K.; Kołodziejczyk, K.: Obliczenia koła obiegowego metodą elementów skończonych. TTS Technika transportu szynowego 22(12), pp. 866-871 (2015).Google Scholar
- 23.Höhn, B.-R., Michaelis, K., Hinterstoißer, M.: Optimization of Gearbox Efficiency. Gomabn 48(4), pp. 441 - 480 (2009)Google Scholar
- 24.Olejarczyk, K.; Wikło, M.; Król, K.; Kołodziejczyk, K.: Wyznaczanie optymalnego poziomu oleju w oparciu o temperaturowe i sprawnościowe kryteria dla prototypowej przekładni cykloidalnej. Autobusy: technika, eksploatacja, systemy transportowe 18(6), pp. 996-999 (2017)Google Scholar