Advertisement

GEDLIB: A C++ Library for Graph Edit Distance Computation

  • David B. BlumenthalEmail author
  • Sébastien Bougleux
  • Johann Gamper
  • Luc Brun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11510)

Abstract

The graph edit distance (\(\mathrm {GED}\)) is a flexible graph dissimilarity measure widely used within the structural pattern recognition field. In this paper, we present GEDLIB, a C++ library for exactly or approximately computing \(\mathrm {GED}\). Many existing algorithms for \(\mathrm {GED}\) are already implemented in GEDLIB. Moreover, GEDLIB is designed to be easily extensible: for implementing new edit cost functions and \(\mathrm {GED}\) algorithms, it suffices to implement abstract classes contained in the library. For implementing these extensions, the user has access to a wide range of utilities, such as deep neural networks, support vector machines, mixed integer linear programming solvers, a blackbox optimizer, and solvers for the linear sum assignment problem with and without error-correction.

Keywords

Graph edit distance Open source library C++ 

References

  1. 1.
    Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y.: A graph database repository and performance evaluation metrics for graph edit distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 138–147. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18224-7_14. http://www.rfai.li.univ-tours.fr/PublicData/GDR4GED/home.htmlCrossRefGoogle Scholar
  2. 2.
    Blumenthal, D.B., Gamper, J.: Improved lower bounds for graph edit distance. IEEE Trans. Knowl. Data Eng. 30(3), 503–516 (2018).  https://doi.org/10.1109/TKDE.2017.2772243CrossRefGoogle Scholar
  3. 3.
    Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: Ring based approximation of graph edit distance. In: Bai, X., Hancock, E.R., Ho, T.K., Wilson, R.C., Biggio, B., Robles-Kelly, A. (eds.) S+SSPR 2018. LNCS, vol. 11004, pp. 293–303. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97785-0_28CrossRefGoogle Scholar
  4. 4.
    Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: Upper bounding GED via transformations to LSAPE based on rings and machine learning (2018, submitted)Google Scholar
  5. 5.
    Blumenthal, D.B., Daller, E., Bougleux, S., Brun, L., Gamper, J.: Quasimetric graph edit distance as a compact quadratic assignment problem. In: ICPR 2018, pp. 934–939 (2018)Google Scholar
  6. 6.
    Blumenthal, D.B., Gamper, J.: On the exact computation of the graph edit distance. Pattern Recognit. Lett. (2018).  https://doi.org/10.1016/j.patrec.2018.05.002CrossRefGoogle Scholar
  7. 7.
    Boria, N., Bougleux, S., Brun, L.: Approximating GED using a stochastic generator and multistart IPFP. In: Bai, X., Hancock, E.R., Ho, T.K., Wilson, R.C., Biggio, B., Robles-Kelly, A. (eds.) S+SSPR 2018. LNCS, vol. 11004, pp. 460–469. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97785-0_44CrossRefGoogle Scholar
  8. 8.
    Bougleux, S., Brun, L.: Linear sum assignment with edition. arXiv:1603.04380 [cs.DS] (2016). https://bougleux.users.greyc.fr/lsape/
  9. 9.
    Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph edit distance as a quadratic assignment problem. Pattern Recognit. Lett. 87, 38–46 (2017).  https://doi.org/10.1016/j.patrec.2016.10.001CrossRefGoogle Scholar
  10. 10.
    Bougleux, S., Gaüzère, B., Blumenthal, D.B., Brun, L.: Fast linear sum assignment with error-correction and no cost constraints. Pattern Recognit. Lett. (2018).  https://doi.org/10.1016/j.patrec.2018.03.032CrossRefGoogle Scholar
  11. 11.
    Bougleux, S., Gaüzère, B., Brun, L.: Graph edit distance as a quadratic program. In: ICPR 2016, pp. 1701–1706 (2016).  https://doi.org/10.1109/ICPR.2016.7899881
  12. 12.
    Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit distance computation combining bipartite matching and exact neighborhood substructure distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18224-7_19CrossRefGoogle Scholar
  13. 13.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011).  https://doi.org/10.1145/1961189.1961199. https://www.csie.ntu.edu.tw/~cjlin/libsvm/
  14. 14.
    Chang, L., Feng, X., Lin, X., Qin, L., Zhang, W.: Efficient graph edit distance computation and verification via anchor-aware lower bound estimation. arXiv:1709.06810 [cs.DB] (2017)
  15. 15.
    Daller, É., Bougleux, S., Gaüzère, B., Brun, L.: Approximate graph edit distance by several local searches in parallel. In: ICPRAM 2018, pp. 149–158 (2018).  https://doi.org/10.5220/0006599901490158
  16. 16.
    Ferrer, M., Serratosa, F., Riesen, K.: A first step towards exact graph edit distance using bipartite graph matching. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 77–86. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18224-7_8CrossRefGoogle Scholar
  17. 17.
    Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: Approximation of graph edit distance based on Hausdorff matching. Pattern Recognit. 48(2), 331–343 (2015).  https://doi.org/10.1016/j.patcog.2014.07.015CrossRefzbMATHGoogle Scholar
  18. 18.
    Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44415-3_8CrossRefGoogle Scholar
  19. 19.
    Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
  20. 20.
    Gurobi Optimization, LLC: Gurobi optimizer reference manual (2018). http://www.gurobi.com
  21. 21.
    Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006).  https://doi.org/10.1109/TPAMI.2006.152CrossRefGoogle Scholar
  22. 22.
    Lee, L., Lumsdaine, A., Siek, J.: The Boost Graph Library: User Guide and Reference Manual (2002). https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/index.html
  23. 23.
    Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.: New binary linear programming formulation to compute the graph edit distance. Pattern Recognit. 72, 254–265 (2017).  https://doi.org/10.1016/j.patcog.2017.07.029CrossRefGoogle Scholar
  24. 24.
    Nissen, S.: Implementation of a fast artificial neural network library (FANN). Technical report, Department of Computer Science, University of Copenhagen (DIKU) (2003). http://leenissen.dk/fann/wp/
  25. 25.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89689-0_33. http://www.fki.inf.unibe.ch/databases/iam-graph-databaseCrossRefGoogle Scholar
  26. 26.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009).  https://doi.org/10.1016/j.imavis.2008.04.004CrossRefGoogle Scholar
  27. 27.
    Riesen, K., Bunke, H., Fischer, A.: Improving graph edit distance approximation by centrality measures. ICPR 2014, pp. 3910–3914 (2014).  https://doi.org/10.1109/ICPR.2014.671
  28. 28.
    Riesen, K., Ferrer, M.: Predicting the correctness of node assignments in bipartite graph matching. Pattern Recognit. Lett. 69, 8–14 (2016).  https://doi.org/10.1016/j.patrec.2015.10.007CrossRefGoogle Scholar
  29. 29.
    Riesen, K., Fischer, A., Bunke, H.: Combining bipartite graph matching and beam search for graph edit distance approximation. In: El Gayar, N., Schwenker, F., Suen, C. (eds.) ANNPR 2014. LNCS (LNAI), vol. 8774, pp. 117–128. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11656-3_11CrossRefGoogle Scholar
  30. 30.
    Riesen, K., Fischer, A., Bunke, H.: Improved graph edit distance approximation with simulated annealing. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 222–231. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58961-9_20CrossRefGoogle Scholar
  31. 31.
    Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. PVLDB 2(1), 25–36 (2009).  https://doi.org/10.14778/1687627.1687631CrossRefGoogle Scholar
  32. 32.
    Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph similarity search over large graph databases. IEEE Trans. Knowl. Data Eng. 27(4), 964–978 (2015).  https://doi.org/10.1109/TKDE.2014.2349924CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly
  2. 2.Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYCCaenFrance

Personalised recommendations