Advertisement

A Parallel MCMC Algorithm for the Balanced Graph Coloring Problem

  • Donatello Conte
  • Giuliano Grossi
  • Raffaella Lanzarotti
  • Jianyi LinEmail author
  • Alessandro Petrini
Conference paper
  • 283 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11510)

Abstract

In parallel computation domain, graph coloring is widely studied in its own and represents a reference problem for scheduling of parallel tasks. Unfortunately, common graph coloring strategies usually focus on minimizing the number of colors without any concern for the sizes of each color class, thus producing highly skewed color class distributions. However, to guarantee efficiency in parallel computations, but also in other application contexts, it is important to keep the color classes highly balanced in their sizes. In this paper we address this challenging issue for large scale graphs, proposing a fast parallel MCMC heuristic for sparse graphs that randomly generates good balanced colorings provided that a sufficient number of colors are made available. We show its effectiveness through some numerical simulations on random graphs.

Keywords

Balanced graph coloring Markov Chain Monte Carlo method Greedy colorer Parallel algorithms 

References

  1. 1.
    Boman, E.G., Bozdağ, D., Catalyurek, U., Gebremedhin, A.H., Manne, F.: A scalable parallel graph coloring algorithm for distributed memory computers. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 241–251. Springer, Heidelberg (2005).  https://doi.org/10.1007/11549468_29CrossRefGoogle Scholar
  2. 2.
    Coleman, T.F., Moré, J.J.: Estimation of sparse Jacobian matrices and graph coloring problems. SIAM J. Numer. Anal. 20(1), 187–209 (1983)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Comi, P., et al.: Hardware-accelerated high-resolution video coding in virtual network functions. In: European Conference on Networks and Communications (EuCNC), pp. 32–36 (2016)Google Scholar
  4. 4.
    Cuculo, V., Lanzarotti, R., Boccignone, G.: Using sparse coding for landmark localization in facial expressions. In: 5th European Workshop on Visual Information Processing, EUVIP 2014, pp. 1–6. IEEE (2014)Google Scholar
  5. 5.
    Erdős, P., Rènyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fakhraei, S., Foulds, J., Shashanka, M., Getoor, L.: Collective spammer detection in evolving multi-relational social networks. In: Proceedings of 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1769–1778. ACM (2015)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)zbMATHGoogle Scholar
  8. 8.
    Gjertsen, R.K., Jones, M.T., Plassmann, P.E.: Parallel heuristics for improved, balanced graph colorings. J. Parallel Distrib. Comput. 37, 171–186 (1996)CrossRefGoogle Scholar
  9. 9.
    Gómez, D., Montero, J., Yáñez, J.: A coloring fuzzy graph approach for image classification. Inf. Sci. 176(24), 3645–3657 (2006)CrossRefGoogle Scholar
  10. 10.
    Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Janis, P., et al.: Device-to-device communication underlaying cellular communications systems. Int. J. Commun. Netw. Syst. Sci. 2(3), 169–178 (2009). ISSN 1913-3715Google Scholar
  12. 12.
    Jerrum, M.R.: A very simple algorithm for estimating the number of \(k\)-colourings of a low-degree graph. Random Struct. Algorithms 7, 157–165 (1995)Google Scholar
  13. 13.
    Jones, M.T., Plassmann, P.E.: A parallel graph coloring heuristic. SIAM J. Sci. Comput. 14, 654–669 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lu, H., Halappanavar, M., Chavarria-Miranda, D., Gebremedhin, A., Kalyanaraman, A.: Balanced coloring for parallel computing applications. In: Proceedings of the IEEE 29th International Parallel and Distributed Processing Symposium, pp. 7–16 (2015)Google Scholar
  15. 15.
    Luby, M.: A simple parallel algorithm for the maximal independent set problem. In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing, pp. 1–10 (1985)Google Scholar
  16. 16.
    Lupaşcu, C.A., Tegolo, D., Bellavia, F., Valenti, C.: Semi-automatic registration of retinal images based on line matching approach. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 453–456. IEEE (2013)Google Scholar
  17. 17.
    Meer, P.: Stochastic image pyramids. CVGIP 45(3), 269–294 (1989)Google Scholar
  18. 18.
    Meyer, W.: Equitable coloring. Am. Math. Mon. 80, 920–922 (1973)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mosa, M.A., Hamouda, A., Marei, M.: Graph coloring and aco based summarization for social networks. Expert. Syst. Appl. 74, 115–126 (2017)CrossRefGoogle Scholar
  20. 20.
    Robert, J., Gjertsen, K., Jones, M.T., Plassmann, P.: Parallel heuristics for improved, balanced graph colorings. J. Parallel Distrib. Comput. 37, 171–186 (1996)CrossRefGoogle Scholar
  21. 21.
    Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 717–726. ACM (2007)Google Scholar
  22. 22.
    Tsolkas, D., Liotou, E., Passas, N., Merakos, L.: A graph-coloring secondary resource allocation for D2D communications in LTE networks. In: IEEE 17th International Workshop on Computer Aided Modeling and Design (CAMAD), pp. 56–60. IEEE (2012)Google Scholar
  23. 23.
    Voss, J.: An Introduction to Statistical Computing: A Simulation-based Approach. Wiley, Chichester (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Donatello Conte
    • 1
  • Giuliano Grossi
    • 2
  • Raffaella Lanzarotti
    • 2
  • Jianyi Lin
    • 3
    Email author
  • Alessandro Petrini
    • 2
  1. 1.Université de Tours, Computer Science Laboratory (LIFAT - EA6300)ToursFrance
  2. 2.Dipartimento di InformaticaUniversità degli Studi di MilanoMilanItaly
  3. 3.Department of MathematicsKhalifa University of Science and TechnologyAbu DhabiUnited Arab Emirates

Personalised recommendations