Advertisement

Thermoelectric Modules Based on Oxide Thin Films

  • Paolo MeleEmail author
  • Shrikant Saini
  • Edoardo Magnone
Chapter

Abstract

Oxides are known as stable, inexpensive, and sustainable thermoelectric (TE) materials. Thermoelectric modules based on bulk oxides legs have been proposed in past years. However, main obstacles to the practical diffusion of such kind of heat harvesters are their low conversion efficiency and mechanical rigidity. Use of nanostructured oxide thin films is expected to overcome both drawbacks. This chapter reviews the recent progress on the fabrication of tiny modules based on oxide thin films.

Keywords

Thermoelectric materials Conversion efficiency Heat harvesting Output power Thin films Rigid substrates Flexible substrates Pulsed laser deposition PLD Atomic layer deposition ALD Magnetron sputtering oxides Modules n-type legs p-type legs Uni-leg modules Hybrid modules Al-doped ZnO AZO ZnO CuO Ca3Co4O9 CuCrO2 

References

  1. 1.
  2. 2.
    T. Seebeck, Ann. Phys. 82, 133 (1821)CrossRefGoogle Scholar
  3. 3.
    P. Mele et al., Metals Mater. Int. 20, 389S (2014)CrossRefGoogle Scholar
  4. 4.
    S. Saini, P. Mele, et al., Energy Conv. Manag. 114, 251 (2016)CrossRefGoogle Scholar
  5. 5.
    P. Mele, S. Saini, H. Honda, et al., Appl. Phys. Lett. 253903, 102 (2013)Google Scholar
  6. 6.
    J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012)CrossRefGoogle Scholar
  7. 7.
    Nanostructured Oxide thermoelectric Materials with Enhanced Phonon Scattering, ed. by M. Ohtaki. Chapter 8 in Oxide Thin Films, Multilayers and Nanocomposites (Springer, Berlin, 2015).  https://doi.org/10.1007/978-3-319-14478-8 Google Scholar
  8. 8.
    M. Ohtaki et al., J. Electron. Mater. 38, 1234 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Saini et al., Sci. Rep. 7, 44621 (2017)CrossRefGoogle Scholar
  10. 10.
    Nanostructured thin films of thermoelectric oxides, ed. by P. Mele, Chapter 8 in Oxide Thin Films, Multilayers and Nanocomposites (Springer, Berlin, 2015).  https://doi.org/10.1007/978-3-319-14478-8 Google Scholar
  11. 11.
    S. Saini, P. Mele, et al., Jpn. J. Appl. Phys. 53, 060306 (2014)CrossRefGoogle Scholar
  12. 12.
    P. Mele et al., Supercond. Sci. Technol. 20, 616 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Miura, B. Maiorov, P. Mele, et al., NPG Asia Mater. (2017).  https://doi.org/10.1038/am.2017.197 CrossRefGoogle Scholar
  14. 14.
    T. Tynell, P. Mele, M. Karppinen, et al., J. Mater. Chem. A 2, 12150 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Darwish, P. Mele et al., chapter 10 in Laser Ablation - From Fundamentals to Applications “INTECH 2018”Google Scholar
  16. 16.
    S. Saini, P. Mele, T. Oyake, J. Shiomi, J.-P. Niemela, M. Karppinen, K. Miyazaki, C. Li, T. Kawaharamura, A. Ichinose, L. Molina-Luna, Thin Solid Films 685, 180 (2019).  https://doi.org/10.1016/j.tsf.2019.06.010 CrossRefGoogle Scholar
  17. 17.
    P. Mele, S. Saini, M.I. Adam, S.J. Singh, et al., in preparationGoogle Scholar
  18. 18.
    W. Somkhunthot, N. Pimpabute, T. Seetawan, Adv. Mater. Res. 622(623), 726 (2013)Google Scholar
  19. 19.
    W. Somkhunthot, N. Pimpabute, A. Vora-ud, T. Seetawan, T. Burinprakhon, Energy Procedia 61, 795 (2014)CrossRefGoogle Scholar
  20. 20.
    W. Somkhunthot, N. Pimpabute, A. Vora-ud, T. Seetawan, T. Burinprakhon Adv, Mater. Res. 931-932, 386 (2014)Google Scholar
  21. 21.
    D. Zappa, S. Dalola, G. Faglia, E. Comini, M. Ferroni, C. Soldano, V. Ferrari, G. Sberveglieri, Beilstein J. Nanotechnol. 5, 927 (2014)CrossRefGoogle Scholar
  22. 22.
    B. Xu, C. Lia, M. Myronov, K. Fobelets, Solid State Electron. 83, 107 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Saini, P. Mele, K. Miyazaki, A. Tiwari, Energ. Conv. Manag 114, 251 (2016)CrossRefGoogle Scholar
  24. 24.
    E.A. Mondarte, V. Copa, A. Tuico, C.J. Vergara, E. Estacio, A. Salvador, A. Somintac, Mat. Sci. Semicond. Proc. 45, 27 (2016)CrossRefGoogle Scholar
  25. 25.
    N.-W. Park, J.-Y. Ahn, T.-H. Park, J.-H. Lee, W.-Y. Lee, K. Cho, Y.-G. Yoon, C.-J. Choi, J.-S. Park, S.-K. Lee, Nanoscale 9, 7027 (2017)CrossRefGoogle Scholar
  26. 26.
    R. Rudež, P. Markowski, M. Presečnik, M. Košir, A. Dziedzic, S. Bernik, Ceram. Int. 41, 13201 (2015)CrossRefGoogle Scholar
  27. 27.
    I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé, P. Tailhades, J. Appl. Phys. 124, 165306 (2018)CrossRefGoogle Scholar
  28. 28.
    L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Cretì, P. Siciliano, A. Perrone, J. Power Sources 196, 3239 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SIT Research LaboratoriesShibaura Institute of TechnologyTokyoJapan
  2. 2.Department of Mechanical and Control EngineeringKyushu Institute of TechnologyKitakyushuJapan
  3. 3.Department of Chemistry and Biochemical EngineeringDongguk UniversitySeoulRepublic of Korea

Personalised recommendations