Advertisement

Evaluation of Smart Phone Open Source Applications for Air Pollution

  • Rasa ZalakeviciuteEmail author
  • Katiuska Alexandrino
  • Patricia Acosta-Vargas
  • Jorge-Luis Pérez-Medina
  • Wilmar Hernandez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 959)

Abstract

Global industrialization, urbanization and technological development have been rapidly changing the atmospheric composition. Air pollution is one of the most critical concerns to human and environmental health, causing respiratory, cardiovascular diseases and incidents of cancer, responsible for seven million premature deaths every year. While most of the major cities have some level of air quality monitoring, the data reported on the official websites are not easily accessed, and are rarely communicated to the citizens, mainly limited to the newspaper and television reports of extreme pollution events. A more efficient way to stay informed of the risks of exposure to bad air quality is a mobile application that can be accessed from anywhere. In this study, we evaluate available open source mobile phone applications for Android and iOS systems. Specifically, we analyze the usability and accessibility functions of the applications in the most populous and most contaminated South American capital cities.

Keywords

Evaluation Mobile applications Air pollution 

Notes

Acknowledgments

The funding for this research is provided by CEDIA-CEPRA projects: CEPRA XII-2018-13 and is supported by UDLA internal project ERI.WH.18.01.

References

  1. 1.
    World Health Organization: Air pollution levels rising in many of the world’s poorest cities. WHO (2017)Google Scholar
  2. 2.
  3. 3.
    WHO: 7 million premature deaths annually linked to air pollution page 1 of 2. WHO: 7 million premature deaths annually linked to air pollution page 2 of 2. http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/#.WqBfue47NRQ.mendeley. Accessed 7 Mar 2018
  4. 4.
    Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367 (2015)CrossRefGoogle Scholar
  5. 5.
    European Environment Agency: Air quality in Europe—2018 report (2018)Google Scholar
  6. 6.
    European Environment Agency: Air quality in Europe—2017 report (2017)Google Scholar
  7. 7.
    Zalakeviciute, R., Rybarczyk, Y., López-Villada, J., Diaz Suarez, M.V.: Quantifying decade-long effects of fuel and traffic regulations on urban ambient PM2.5 pollution in a mid-size South American city. Atmos. Pollut. Res. (2017).  https://doi.org/10.1016/j.apr.2017.07.001CrossRefGoogle Scholar
  8. 8.
    Singla, S.: Air quality friendly route recommendation system. In: Proceedings of the 2018 Workshop on MobiSys 2018 Ph. D. Forum, MobiSys Ph. D. Forum 2018, pp. 9–10. ACM, New York (2018)Google Scholar
  9. 9.
    Zalakeviciute, R., Buenaño, A., Rybarczyk, Y., Sannino, D.: Urban air pollution mapping and traffic intensity: active transport application. In: Air Pollution. InTech (2019)Google Scholar
  10. 10.
    Pérez Medina, J.L., Zalakeviciute, R., Rybarczyk, Y.: Assessing the usability of air quality mobile application. In: 2019 International Conference on eDemocracy & eGovernment (ICEDEG). IEEE (2019)Google Scholar
  11. 11.
    Garzon, S.R., Walther, S., Pang, S., Deva, B., Küpper, A.: Urban air pollution alert service for smart cities. In: Proceedings of the 8th International Conference on the Internet of Things, IOT 2018, pp. 9:1–9:8. ACM, New York (2018)Google Scholar
  12. 12.
    Acosta-Vargas, P., Zalakeviciute, R., Luján-Mora, S., Hernandez, W.: Accessibility evaluation of mobile applications for monitoring air quality, vol. 918, pp. 1–11. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11890-7_61Google Scholar
  13. 13.
    Mobile Accessibility at W3C: Web accessibility initiative (WAI). W3CGoogle Scholar
  14. 14.
    World Wide Web Consortium (W3C) Web Accessibility Perspectives: Explore the impact and benefits for everyone. Web Accessibility Initiative (WAI). W3CGoogle Scholar
  15. 15.
    De Mesnard, L.: Pollution models and inverse distance weighting: some critical remarks. Comput. Geosci. 52, 459–469 (2013).  https://doi.org/10.1016/j.cageo.2012.11.002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rasa Zalakeviciute
    • 1
    Email author
  • Katiuska Alexandrino
    • 1
  • Patricia Acosta-Vargas
    • 2
  • Jorge-Luis Pérez-Medina
    • 2
  • Wilmar Hernandez
    • 3
  1. 1.Biodiversidad Medio Ambiente y Salud (BIOMAS)Universidad de Las AméricasQuitoEcuador
  2. 2.Intelligent and Interactive Systems Lab (SI2 Lab)Universidad de Las Américas (UDLA)QuitoEcuador
  3. 3.Universidad de Las AmericasQuitoEcuador

Personalised recommendations