Advertisement

Abstract

In this paper we study convolutional codes tailor made for fast decoding over burst erasure channels. This class of streaming codes are suitable for multimedia streaming applications where a stream of source packets must be transmitted in strict delay constraints. We show that in the case of dealing with burst erasure channels it is possible to come up with very simply constructions of encoders of convolutional codes that admit the fastest possible decoding delay to correct all bursts of a given length with a fixed rate. An explicit class of such encoders is presented. The last part of the paper is devoted to treat isolated errors. We propose the use of MDP convolutional codes to recover this kind of losses.

Keywords

Network coding Convolutional codes Burst erasure channel delay Isolated errors 

Notes

Acknowledgment

This work was partially supported by Spanish grant AICO/2017/128 of the Generalitat Valenciana and the University of Alicante under the project VIGROB-287.

References

  1. 1.
    Almeida, P., Napp, D., Pinto, R.: Superregular matrices and applications to convolutional codes. Linear Algebra Appl. 499, 1–25 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arai, M., Yamaguci, A., Fukumpto, S., Iwasaki, K.: Method to recover lost internet packets using \((n, k, m)\) convolutional code. Electron. Commun. Jpn. Part 3 88(7), 1–13 (2005)Google Scholar
  3. 3.
    Badr, A., Khisti, A., Tan, W.T., Apostolopoulos, J.: Robust streaming erasure codes based on deterministic channel approximations. In: 2013 IEEE International Symposium on Information Theory, pp. 1002–1006 (2013)Google Scholar
  4. 4.
    Badr, A., Khisti, A., Tan, W.-T., Apostolopoulos, J.: Layered constructions for low-delay streaming codes. IEEE Trans. Inf. Theory 63(1), 111–141 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Climent, J.J., Napp, D., Pinto, R., Simões, R.: Decoding of \(2\)D convolutional codes over the erasure channel. Adv. Math. Commun. 10(1), 179–193 (2016)Google Scholar
  6. 6.
    Costello Jr., D.: A construction technique for random-error-correcting convolutional codes. IEEE Trans. Inf. Theory 15(5), 631–636 (1969)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Deng, H., Kuijper, M., Evans, J.: Burst erasure correction capabilities of \((n,n-1)\) convolutional codes. In: 2009 IEEE International Conference on Communications, pp. 1–5 (2009)Google Scholar
  8. 8.
    Gilbert, E.N.: Capacity of a burst-noise channel. Bell Syst. Tech. J. 39, 1253–1265 (1960)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gluesing-Luerssen, H., Rosenthal, J., Smarandache, R.: Strongly MDS convolutional codes. IEEE Trans. Inf. Theory 52(2), 584–598 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Napp, D., Climent, J.-J., Requena, V.: Block toeplitz matrices for burst-correcting convolutional codes. Rev. Real Acad. Cienc. Exactas Fsicas Nat. Ser. A Mat (submitted)Google Scholar
  11. 11.
    Jain, S., Chouhan, S.: Cyclic Redundancy Codes: Study and Implementation. Int. J. Emerg. Technol. Adv. Eng. 4, 2250–2459 (2014)Google Scholar
  12. 12.
    Johannesson, R., Zigangirov, K.Sh.: Fundamentals of Convolutional Coding. IEEE Press, New York (2015)Google Scholar
  13. 13.
    Kuijper, M., Bossert, M.: On (partial) unit memory codes based on reed-solomon codes for streaming. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 920–924 (2016)Google Scholar
  14. 14.
    Mahmood, R., Badr, A., Khisti, A.: Streaming-codes for multicast over burst erasure channels. IEEE Trans. Inf. Theory 61(8), 4181–4208 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mahmood, R., Badr, A., Khisti, A.: Convolutional codes with maximum column sum rank for network streaming. IEEE Trans. Inf. Theory 62(6), 3039–3052 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Martinian, E., Sundberg, C.E.W.: Burst erasure correction codes with low decoding delay. IEEE Trans. Inf. Theory 50(10), 2494–2502 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    McEliece, R.J.: The algebraic theory of convolutional codes. In: Handbook of Coding Theory, vol. 1, pp. 1065–1138. Elsevier Science Publishers (1998)Google Scholar
  18. 18.
    Peterson, W.W., Brown, D.T.: Cyclic codes for error detection. Proc. IRE 49(1), 228–235 (1961)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tomás, V., Rosenthal, J., Smarandache, R.: Decoding of MDP convolutional codes over the erasure channel. In: Proceedings of the 2009 IEEE International Symposium on Information Theory (ISIT 2009), Seoul, Korea, pp. 556–560. IEEE, June 2009Google Scholar
  20. 20.
    Tomás, V., Rosenthal, J., Smarandache, R.: Decoding of convolutional codes over the erasure channel. IEEE Trans. Inf. Theory 58(1), 90–108 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsUniversitat d’AlacantAlacantSpain

Personalised recommendations