Advertisement

Current Trends and Future Perspectives for Peripheral Nerve Regeneration

  • Georgios N. Panagopoulos
  • Panayiotis D. Megaloikonomos
  • Andreas F. MavrogenisEmail author
Chapter

Abstract

Peripheral nerve injury may result in severe disability with substantial social and personal cost, and a potentially devastating impact to patients’ quality of life. Advances in peripheral nerve surgery, regeneration, and rehabilitation; better understanding of the pathophysiology and molecular basis of nerve injury; and refined microsurgical techniques have contributed to accelerated nerve regeneration and improved outcome for the patients. Experimental research has evolved the process of regeneration using pharmacological agents, bioengineering of sophisticated nerve conduits, pluripotent stem cells, and gene therapy. This chapter attempts a brief overview of the basic principles of nerve repair, current concepts, and future perspectives of peripheral nerve regeneration.

Keywords

Peripheral nerve regeneration Microsurgery Nerve grafts Nerve transfers Nerve conduits Stem cells Reeducation 

References

  1. 1.
    Kelsey JL. Upper extremity disorders: frequency, impact, and cost. New York: Churchill Livingstone; 1997.Google Scholar
  2. 2.
    Kouyoumdjian JA. Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve. 2006;34(6):785–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Siemionow M, Brzezicki G. Current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol. 2009;87:141–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma. 1998;45(1):116–22.CrossRefGoogle Scholar
  5. 5.
    Maricevic A, Erceg M. War injuries to the extremities. Mil Med. 1997;162(12):808–11.CrossRefGoogle Scholar
  6. 6.
    Razaq S, Yasmeen R, Butt AW, Akhtar N, Mansoor SN. The pattern of peripheral nerve injuries among Pakistani soldiers in the war against terror. J Coll Physicians Surg Pak. 2015;25(5):363–6.PubMedGoogle Scholar
  7. 7.
    Birch R, Misra P, Stewart MP, Eardley WG, Ramasamy A, Brown K, Shenoy R, Anand P, Clasper J, Dunn R, Etherington J. Nerve injuries sustained during warfare: Part I—Epidemiology. J Bone Joint Surg Br. 2012;94(4):523–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Ray WZ, Mackinnon SE. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol. 2010;223(1):77–85.CrossRefGoogle Scholar
  9. 9.
    Griffin JW, Hogan MV, Chhabra AB, Deal DN. Peripheral nerve repair and reconstruction. J Bone Joint Surg Am. 2013;95(23):2144–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Kline DG. Nerve surgery as it is now and as it may be. Neurosurgery. 2000;46(6):1285–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Tos P, Ronchi G, Papalia I, Sallen V, Legagneux J, Geuna S, Giacobini-Robecchi MG. Methods and protocols in peripheral nerve regeneration experimental research: Part I—Experimental models. Int Rev Neurobiol. 2009;87:47–79.PubMedCrossRefGoogle Scholar
  12. 12.
    Costa LM, Simoes MJ, Mauricio AC, Varejao AS. Methods and protocols in peripheral nerve regeneration experimental research: Part IV—Kinematic gait analysis to quantify peripheral nerve regeneration in the rat. Int Rev Neurobiol. 2009;87:127–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Navarro X, Udina E. Methods and protocols in peripheral nerve regeneration experimental research: Part III—Electrophysiological evaluation. Int Rev Neurobiol. 2009;87:105–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Raimondo S, Fornaro M, Di Scipio F, Ronchi G, Giacobini-Robecchi MG, Geuna S. Methods and protocols in peripheral nerve regeneration experimental research: Part II—Morphological techniques. Int Rev Neurobiol. 2009;87:81–103.PubMedCrossRefGoogle Scholar
  15. 15.
    Chan KM, Gordon T, Zochodne DW, Power HA. Improving peripheral nerve regeneration: from molecular mechanisms to potential therapeutic targets. Exp Neurol. 2014;261:826–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int. 2014;2014:698256.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Isaacs J. Treatment of acute peripheral nerve injuries: current concepts. J Hand Surg Am. 2010;35(3):491–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Isaacs JE, McDaniel CO, Owen JR, Wayne JS. Comparative analysis of biomechanical performance of available “nerve glues”. J Hand Surg Am. 2008;33(6):893–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Siemionow M, Tetik C, Ozer K, Ayhan S, Siemionow K, Browne E. Epineural sleeve neurorrhaphy: surgical technique and functional results—a preliminary report. Ann Plast Surg. 2002;48(3):281–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Siemionow MZ, Eisenmann-Klein M. Plastic and reconstructive surgery. Berlin: Springer; 2010.CrossRefGoogle Scholar
  21. 21.
    Siemionow M, Bobkiewicz A, Cwykiel J, Uygur S, Francuzik W. Epineural sheath jacket as a new surgical technique for neuroma prevention in the rat sciatic nerve model. Ann Plast Surg. 2017;79(4):377–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Tsao B, Boulis N, Bethoux F, Murray B. Trauma of the nervous system. In: Daroff R, Fenichel G, Jankovic J, Mazziotta J, editors. Bradley’s neurology in clinical practice. 6th ed. Philadelphia: Elsevier; 2012. p. 984–1002.CrossRefGoogle Scholar
  23. 23.
    Colen KL, Choi M, Chiu DT. Nerve grafts and conduits. Plast Reconstr Surg. 2009;124(6 Suppl):e386–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Millesi H, Meissl G, Berger A. The interfascicular nerve-grafting of the median and ulnar nerves. J Bone Joint Surg Am. 1972;54(4):727–50.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Taylor GI, Ham FJ. The free vascularized nerve graft. A further experimental and clinical application of microvascular techniques. Plast Reconstr Surg. 1976;57(4):413–26.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Terzis JK, Kostopoulos VK. Vascularized nerve grafts and vascularized fascia for upper extremity nerve reconstruction. Hand (NY). 2010;5(1):19–30.CrossRefGoogle Scholar
  27. 27.
    Farnebo S, Thorfinn J, Dahlin L. Peripheral nerve injuries of the upper extremity. In: Neligan P, editor. Plastic surgery, vol. 6. Philadelphia: Elsevier; 2013. p. 694–718.Google Scholar
  28. 28.
    Mackinnon SE, Dellon AL. Surgery of the peripheral nerve. New York: Thieme Medical Publishers; 1988.Google Scholar
  29. 29.
    Norkus T, Norkus M, Ramanauskas T. Donor, recipient and nerve grafts in brachial plexus reconstruction: anatomical and technical features for facilitating the exposure. Surg Radiol Anat. 2005;27(6):524–30.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Millesi H. Peripheral nerve surgery today: turning point or continuous development? J Hand Surg Br. 1990;15(3):281–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Moore AM, Ray WZ, Chenard KE, Tung T, Mackinnon SE. Nerve allotransplantation as it pertains to composite tissue transplantation. Hand (NY). 2009;4(3):239–44.CrossRefGoogle Scholar
  32. 32.
    Ross D, Mackinnon SE, Chang YL. Intraneural anatomy of the median nerve provides “third web space” donor nerve graft. J Reconstr Microsurg. 1992;8(3):225–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson PN, Turmaine M. Peripheral nerve regeneration through grafts of living and freeze-dried CNS tissue. Neuropathol Appl Neurobiol. 1986;12(4):389–99.PubMedCrossRefGoogle Scholar
  34. 34.
    Evans PJ, Mackinnon SE, Best TJ, Wade JA, Awerbuck DC, Makino AP, Hunter DA, Midha R. Regeneration across preserved peripheral nerve grafts. Muscle Nerve. 1995;18(10):1128–38.CrossRefGoogle Scholar
  35. 35.
    Lawson GM, Glasby MA. A comparison of immediate and delayed nerve repair using autologous freeze-thawed muscle grafts in a large animal model. The simple injury. J Hand Surg Br. 1995;20(5):663–700.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Doolabh VB, Mackinnon SE. FK506 accelerates functional recovery following nerve grafting in a rat model. Plast Reconstr Surg. 1999;103(7):1928–36.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Konofaos P, Terzis JK. FK506 and nerve regeneration: past, present, and future. J Reconstr Microsurg. 2013;29(3):141–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gold BG. FK506 and the role of immunophilins in nerve regeneration. Mol Neurobiol. 1997;15(3):285–306.PubMedCrossRefGoogle Scholar
  39. 39.
    Gold BG, Katoh K, Storm-Dickerson T. The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve. J Neurosci. 1995;15(11):7509–16.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mackinnon SE, Doolabh VB, Novak CB, Trulock EP. Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg. 2001;107(6):1419–29.PubMedCrossRefGoogle Scholar
  41. 41.
    Sachanandani NF, Pothula A, Tung TH. Nerve gaps. Plast Reconstr Surg. 2014;133(2):313–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Konofaos P, Ver Halen JP. Nerve repair by means of tubulization: past, present, future. J Reconstr Microsurg. 2013;29(3):149–64.PubMedCrossRefGoogle Scholar
  43. 43.
    Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43(5):553–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Karacaoglu E, Yuksel F, Peker F, Guler MM. Nerve regeneration through an epineural sheath: its functional aspect compared with nerve and vein grafts. Microsurgery. 2001;21(5):196–201.PubMedCrossRefGoogle Scholar
  45. 45.
    Chen YS, Chang JY, Cheng CY, Tsai FJ, Yao CH, Liu BS. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials. 2005;26(18):3911–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Patel M, Mao L, Wu B, Vandevord PJ. GDNF-chitosan blended nerve guides: a functional study. J Tissue Eng Regen Med. 2007;1(5):360–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Uebersax L, Mattotti M, Papaloizos M, Merkle HP, Gander B, Meinel L. Silk fibroin matrices for the controlled release of nerve growth factor (NGF). Biomaterials. 2007;28(30):4449–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Jiang X, Lim SH, Mao HQ, Chew SY. Current applications and future perspectives of artificial nerve conduits. Exp Neurol. 2010;223(1):86–101.PubMedCrossRefGoogle Scholar
  49. 49.
    Chiono V, Tonda-Turo C, Ciardelli G. Artificial scaffolds for peripheral nerve reconstruction. Int Rev Neurobiol. 2009;87:173–98.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen YS, Hsieh CL, Tsai CC, Chen TH, Cheng WC, Hu CL, Yao CH. Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin. Biomaterials. 2000;21(15):1541–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Stanec S, Stanec Z. Reconstruction of upper-extremity peripheral-nerve injuries with ePTFE conduits. J Reconstr Microsurg. 1998;14(4):227–32.PubMedCrossRefGoogle Scholar
  52. 52.
    Yan H, Zhang F, Chen MB, Lineaweaver WC. Conduit luminal additives for peripheral nerve repair. Int Rev Neurobiol. 2009;87:199–225.PubMedCrossRefGoogle Scholar
  53. 53.
    Chen X, Wang XD, Chen G, Lin WW, Yao J, Gu XS. Study of in vivo differentiation of rat bone marrow stromal cells into Schwann cell-like cells. Microsurgery. 2006;26(2):111–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Raimondo S, Nicolino S, Tos P, Battiston B, Giacobini-Robecchi MG, Perroteau I, Geuna S. Schwann cell behavior after nerve repair by means of tissue-engineered muscle-vein combined guides. J Comp Neurol. 2005;489(2):249–59.PubMedCrossRefGoogle Scholar
  55. 55.
    Nilsson A, Dahlin L, Lundborg G, Kanje M. Graft repair of a peripheral nerve without the sacrifice of a healthy donor nerve by the use of acutely dissociated autologous Schwann cells. Scand J Plast Reconstr Surg Hand Surg. 2005;39(1):1–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Evans GR, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG, Patrick CW Jr. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials. 2002;23(3):841–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Mosahebi A, Wiberg M, Terenghi G. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng. 2003;9(2):209–18.PubMedCrossRefGoogle Scholar
  58. 58.
    Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H. Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng. 2006;12(6):1451–165.PubMedCrossRefGoogle Scholar
  59. 59.
    Nakayama K, Takakuda K, Koyama Y, Itoh S, Wang W, Mukai T, Shirahama N. Enhancement of peripheral nerve regeneration using bioabsorbable polymer tubes packed with fibrin gel. Artif Organs. 2007;31(7):500–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Matsumoto K, Ohnishi K, Kiyotani T, Sekine T, Ueda H, Nakamura T, Endo K, Shimizu Y. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 2000;868(2):315–28.PubMedCrossRefGoogle Scholar
  61. 61.
    Allmeling C, Jokuszies A, Reimers K, Kall S, Choi CY, Brandes G, Kasper C, Scheper T, Guggenheim M, Vogt PM. Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif. 2008;41(3):408–20.PubMedCrossRefGoogle Scholar
  62. 62.
    Bunting S, Di Silvio L, Deb S, Hall S. Bioresorbable glass fibres facilitate peripheral nerve regeneration. J Hand Surg Br. 2005;30(3):242–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Xu X, Yee WC, Hwang PY, Yu H, Wan AC, Gao S, Boon KL, Mao HQ, Leong KW, Wang S. Peripheral nerve regeneration with sustained release of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits. Biomaterials. 2003;24(13):2405–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Wood MD, Moore AM, Hunter DA, Tuffaha S, Borschel GH, Mackinnon SE, Sakiyama-Elbert SE. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater. 2009;5(4):959–68.PubMedCrossRefGoogle Scholar
  65. 65.
    Ohta M, Suzuki Y, Chou H, Ishikawa N, Suzuki S, Tanihara M, Suzuki Y, Mizushima Y, Dezawa M, Ide C. Novel heparin/alginate gel combined with basic fibroblast growth factor promotes nerve regeneration in rat sciatic nerve. J Biomed Mater Res A. 2004;71(4):661–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang J, Lineaweaver WC, Oswald T, Chen Z, Chen Z, Zhang F. Ciliary neurotrophic factor for acceleration of peripheral nerve regeneration: an experimental study. J Reconstr Microsurg. 2004;20(4):323–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Hobson MI, Green CJ, Terenghi G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anat. 2000;197(Pt 4):591–605.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kalbermatten DF, Kingham PJ, Mahay D, Mantovani C, Pettersson J, Raffoul W, Balcin H, Pierer G, Terenghi G. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. J Plast Reconstr Aesthet Surg. 2008;61(6):669–75.PubMedCrossRefGoogle Scholar
  69. 69.
    Fansa H, Schneider W, Wolf G, Keilhoff G. Influence of insulin-like growth factor-I (IGF-I) on nerve autografts and tissue-engineered nerve grafts. Muscle Nerve. 2002;26(1):87–93.PubMedCrossRefGoogle Scholar
  70. 70.
    AxoGen, Inc. Announces commercial release and first clinical implant of Avive™ soft tissue membrane. 2016. https://globenewswire.com/news-release/2016/11/21. Accessed 13 Aug 2017.
  71. 71.
    Avive™ Soft Tissue Membrane. 2016. http://www.axogeninc.com/products. Accessed 13 Aug 2017.
  72. 72.
    Lee SK, Wolfe SW. Nerve transfers for the upper extremity: new horizons in nerve reconstruction. J Am Acad Orthop Surg. 2012;20(8):506–17.PubMedCrossRefGoogle Scholar
  73. 73.
    Tung TH, Mackinnon SE. Nerve transfers: indications, techniques, and outcomes. J Hand Surg Am. 2010;35(2):332–41.PubMedCrossRefGoogle Scholar
  74. 74.
    Wong AH, Pianta TJ, Mastella DJ. Nerve transfers. Hand Clin. 2012;28(4):571–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Tos P, Colzani G, Ciclamini D, Titolo P, Pugliese P, Artiaco S. Clinical applications of end-to-side neurorrhaphy: an update. Biomed Res Int. 2014;2014:646128.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Viterbo F, Trindade JC, Hoshino K, Mazzoni Neto A. End-to-side neurorrhaphy with removal of the epineural sheath: an experimental study in rats. Plast Reconstr Surg. 1994;94(7):1038–47.PubMedCrossRefGoogle Scholar
  77. 77.
    Geuna S, Papalia I, Tos P. End-to-side (terminolateral) nerve regeneration: a challenge for neuroscientists coming from an intriguing nerve repair concept. Brain Res Rev. 2006;52(2):381–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Tos P, Artiaco S, Papalia I, Marcoccio I, Geuna S, Battiston B. End-to-side nerve regeneration: from the laboratory bench to clinical applications. Int Rev Neurobiol. 2009;87:281–94.PubMedCrossRefGoogle Scholar
  79. 79.
    Brenner MJ, Dvali L, Hunter DA, Myckatyn TM, Mackinnon SE. Motor neuron regeneration through end-to-side repairs is a function of donor nerve axotomy. Plast Reconstr Surg. 2007;120(1):215–23.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Terzis JK, Tzafetta K. “Babysitter” procedure with concomitant muscle transfer in facial paralysis. Plast Reconstr Surg. 2009;124(4):1142–56.PubMedCrossRefGoogle Scholar
  81. 81.
    Davidge KM, Yee A, Moore AM, Mackinnon SE. The supercharge end-to-side anterior interosseous-to-ulnar motor nerve transfer for restoring intrinsic function: clinical experience. Plast Reconstr Surg. 2015;136(3):344e–52e.PubMedCrossRefGoogle Scholar
  82. 82.
    Elfar JC, Jacobson JA, Puzas JE, Rosier RN, Zuscik MJ. Erythropoietin accelerates functional recovery after peripheral nerve injury. J Bone Joint Surg Am. 2008;90(8):1644–53.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Yan Y, Sun HH, Hunter DA, Mackinnon SE, Johnson PJ. Efficacy of short-term FK506 administration on accelerating nerve regeneration. Neurorehabil Neural Repair. 2012;26(6):570–80.PubMedCrossRefGoogle Scholar
  84. 84.
    Kostopoulos VK, Davis CL, Terzis JK. Effects of acetylo-L-carnitine in end-to-side neurorrhaphy: a pilot study. Microsurgery. 2009;29(6):456–63.PubMedCrossRefGoogle Scholar
  85. 85.
    Reid AJ, Shawcross SG, Hamilton AE, Wiberg M, Terenghi G. N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations. Neurosci Res. 2009;65(2):148–55.PubMedCrossRefGoogle Scholar
  86. 86.
    Mohammadi R, Hirsaee MA, Amini K. Improvement of functional recovery of transected peripheral nerve by means of artery grafts filled with diclofenac. Int J Surg. 2013;11(3):259–64.PubMedCrossRefGoogle Scholar
  87. 87.
    Odaci E, Kaplan S. Melatonin and nerve regeneration. Int Rev Neurobiol. 2009;87:317–35.PubMedCrossRefGoogle Scholar
  88. 88.
    Fleming CE, Saraiva MJ, Sousa MM. Transthyretin enhances nerve regeneration. J Neurochem. 2007;103(2):831–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Sun HH, Saheb-Al-Zamani M, Yan Y, Hunter DA, Mackinnon SE, Johnson PJ. Geldanamycin accelerated peripheral nerve regeneration in comparison to FK-506 in vivo. Neuroscience. 2012;223:114–23.PubMedCrossRefGoogle Scholar
  90. 90.
    Udina E, Ladak A, Furey M, Brushart T, Tyreman N, Gordon T. Rolipram-induced elevation of cAMP or chondroitinase ABC breakdown of inhibitory proteoglycans in the extracellular matrix promotes peripheral nerve regeneration. Exp Neurol. 2010;223(1):143–52.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Sharma N, Coughlin L, Porter RG, Tanzer L, Wurster RD, Marzo SJ, Jones KJ, Foecking EM. Effects of electrical stimulation and gonadal steroids on rat facial nerve regenerative properties. Restor Neurol Neurosci. 2009;27(6):633–44.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Madura T, Kubo T, Tanag M, Matsuda K, Tomita K, Yano K, Hosokawa K. The Rho-associated kinase inhibitor fasudil hydrochloride enhances neural regeneration after axotomy in the peripheral nervous system. Plast Reconstr Surg. 2007;119(2):526–35.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Zuo J, Neubauer D, Graham J, Krekoski CA, Ferguson TA, Muir D. Regeneration of axons after nerve transection repair is enhanced by degradation of chondroitin sulfate proteoglycan. Exp Neurol. 2002;176(1):221–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, Kohsaka M, Aoki H, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo). 1987;40(9):1256–65.CrossRefGoogle Scholar
  95. 95.
    Wang MS, Zeleny-Pooley M, Gold BG. Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve. J Pharmacol Exp Ther. 1997;282(2):1084–93.PubMedGoogle Scholar
  96. 96.
    Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J Stem Cells. 2015;7(1):11–26.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci. 2001;14(11):1771–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Hong SQ, Zhang HT, You J, Zhang MY, Cai YQ, Jiang XD, Xu RX. Comparison of transdifferentiated and untransdifferentiated human umbilical mesenchymal stem cells in rats after traumatic brain injury. Neurochem Res. 2011;36(12):2391–400.PubMedCrossRefGoogle Scholar
  99. 99.
    Cui L, Jiang J, Wei L, Zhou X, Fraser JL, Snider BJ, Yu SP. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26(5):1356–65.PubMedCrossRefGoogle Scholar
  100. 100.
    Lee EJ, Xu L, Kim GH, Kang SK, Lee SW, Park SH, Kim S, Choi TH, Kim HS. Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials. 2012;33(29):7039–46.PubMedCrossRefGoogle Scholar
  101. 101.
    Craff MN, Zeballos JL, Johnson TS, Ranka MP, Howard R, Motarjem P, Randolph MA, Winograd JM. Embryonic stem cell-derived motor neurons preserve muscle after peripheral nerve injury. Plast Reconstr Surg. 2007;119(1):235–45.PubMedCrossRefGoogle Scholar
  102. 102.
    Pan HC, Chen CJ, Cheng FC, Ho SP, Liu MJ, Hwang SM, Chang MH, Wang YC. Combination of G-CSF administration and human amniotic fluid mesenchymal stem cell transplantation promotes peripheral nerve regeneration. Neurochem Res. 2009;34(3):518–27.PubMedCrossRefGoogle Scholar
  103. 103.
    Cheng FC, Tai MH, Sheu ML, Chen CJ, Yang DY, Su HL, Ho SP, Lai SZ, Pan HC. Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J Neurosurg. 2010;112(4):868–79.PubMedCrossRefGoogle Scholar
  104. 104.
    Gartner A, Pereira T, Alves MG, Armada-da-Silva PA, Amorim I, Gomes R, Ribeiro J, Franca ML, Lopes C, Carvalho RA, Socorro S, Oliveira PF, Porto B, Sousa R, Bombaci A, Ronchi G, Fregnan F, Varejao AS, Luis AL, Geuna S, Mauricio AC. Use of poly(DL-lactide-epsilon-caprolactone) membranes and mesenchymal stem cells from the Wharton’s jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: in vitro and in vivo analysis. Differentiation. 2012;84(5):355–65.PubMedCrossRefGoogle Scholar
  105. 105.
    Guo BF, Dong MM. Application of neural stem cells in tissue-engineered artificial nerve. Otolaryngol Head Neck Surg. 2009;140(2):159–64.PubMedCrossRefGoogle Scholar
  106. 106.
    Liard O, Segura S, Sagui E, Nau A, Pascual A, Cambon M, Darlix JL, Fusai T, Moyse E. Adult-brain-derived neural stem cells grafting into a vein bridge increases postlesional recovery and regeneration in a peripheral nerve of adult pig. Stem Cells Int. 2012;2012:128732.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Johnson TS, O’Neill AC, Motarjem PM, Nazzal J, Randolph M, Winograd JM. Tumor formation following murine neural precursor cell transplantation in a rat peripheral nerve injury model. J Reconstr Microsurg. 2008;24(8):545–50.PubMedCrossRefGoogle Scholar
  108. 108.
    McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26(24):6651–60.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Marchesi C, Pluderi M, Colleoni F, Belicchi M, Meregalli M, Farini A, Parolini D, Draghi L, Fruguglietti ME, Gavina M, Porretti L, Cattaneo A, Battistelli M, Prelle A, Moggio M, Borsa S, Bello L, Spagnoli D, Gaini SM, Tanzi MC, Bresolin N, Grimoldi N, Torrente Y. Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection. Glia. 2007;55(4):425–38.PubMedCrossRefGoogle Scholar
  110. 110.
    Amoh Y, Aki R, Hamada Y, Niiyama S, Eshima K, Kawahara K, Sato Y, Tani Y, Hoffman RM, Katsuoka K. Nestin-positive hair follicle pluripotent stem cells can promote regeneration of impinged peripheral nerve injury. J Dermatol. 2012;39(1):33–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J. Lambrichts human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J. 2014;28(4):1634–43.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Salomone R, Bento RF, Costa HJ, Azzi-Nogueira D, Ovando PC, Da-Silva CF, Zanatta DB, Strauss BE, Haddad LA. Bone marrow stem cells in facial nerve regeneration from isolated stumps. Muscle Nerve. 2013;48(3):423–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Zhao Z, Wang Y, Peng J, Ren Z, Zhang L, Guo Q, Xu W, Lu S. Improvement in nerve regeneration through a decellularized nerve graft by supplementation with bone marrow stromal cells in fibrin. Cell Transplant. 2014;23(1):97–110.PubMedCrossRefGoogle Scholar
  114. 114.
    di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg. 2010;63(9):1544–52.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Sun F, Zhou K, Mi WJ, Qiu JH. Repair of facial nerve defects with decellularized artery allografts containing autologous adipose-derived stem cells in a rat model. Neurosci Lett. 2011;499(2):104–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Ikeda M, Uemura T, Takamatsu K, Okada M, Kazuki K, Tabata Y, Ikada Y, Nakamura H. Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J Biomed Mater Res A. 2014;102(5):1370–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.CrossRefGoogle Scholar
  118. 118.
    Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci. 1992;12(11):4565–74.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Paspala SA, Murthy TV, Mahaboob VS, Habeeb MA. Pluripotent stem cells—a review of the current status in neural regeneration. Neurol India. 2011;59(4):558–65.PubMedCrossRefGoogle Scholar
  120. 120.
    Safford KM, Rice HE. Stem cell therapy for neurologic disorders: therapeutic potential of adipose-derived stem cells. Curr Drug Targets. 2005;6(1):57–62.PubMedCrossRefGoogle Scholar
  121. 121.
    Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol. 2006;206(1):229–37.PubMedCrossRefGoogle Scholar
  122. 122.
    de Winter F, Hoyng S, Tannemaat M, Eggers R, Mason M, Malessy M, Verhaagen J. Gene therapy approaches to enhance regeneration of the injured peripheral nerve. Eur J Pharmacol. 2013;719(1–3):145–52.PubMedCrossRefGoogle Scholar
  123. 123.
    Gordon T, Brushart TM, Chan KM. Augmenting nerve regeneration with electrical stimulation. Neurol Res. 2008;30(10):1012–22.PubMedCrossRefGoogle Scholar
  124. 124.
    Gordon T, Amirjani N, Edwards DC, Chan KM. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol. 2010;223(1):192–202.CrossRefGoogle Scholar
  125. 125.
    Rochkind S. Phototherapy in peripheral nerve regeneration: from basic science to clinical study. Neurosurg Focus. 2009;26(2):E8.PubMedCrossRefGoogle Scholar
  126. 126.
    Rochkind S, Geuna S, Shainberg A. Phototherapy and nerve injury: focus on muscle response. Int Rev Neurobiol. 2013;109:99–109.CrossRefGoogle Scholar
  127. 127.
    Rochkind S, Shainberg A. Protective effect of laser phototherapy on acetylcholine receptors and creatine kinase activity in denervated muscle. Photomed Laser Surg. 2013;31(10):499–504.PubMedCrossRefGoogle Scholar
  128. 128.
    Rochkind S, Geuna S, Shainberg A. Phototherapy in peripheral nerve injury: effects on muscle preservation and nerve regeneration. Int Rev Neurobiol. 2009;87:445–64.PubMedCrossRefGoogle Scholar
  129. 129.
    Radtke C, Kocsis JD, Vogt PM. Transplantation of olfactory ensheathing cells for peripheral nerve regeneration. Int Rev Neurobiol. 2009;87:405–15.PubMedCrossRefGoogle Scholar
  130. 130.
    Ramos LE, Zell JP. Rehabilitation program for children with brachial plexus and peripheral nerve injury. Semin Pediatr Neurol. 2000;7(1):52–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Scott KR, Ahmed A, Scott L, Kothari MJ. Rehabilitation of brachial plexus and peripheral nerve disorders. Handb Clin Neurol. 2013;110:499–514.PubMedCrossRefGoogle Scholar
  132. 132.
    Smania N, Berto G, La Marchina E, Melotti C, Midiri A, Roncari L, Zenorini A, Ianes P, Picelli A, Waldner A, Faccioli S, Gandolfi M. Rehabilitation of brachial plexus injuries in adults and children. Eur J Phys Rehabil Med. 2012;48(3):483–506.PubMedGoogle Scholar
  133. 133.
    Mavrogenis AF, Spyridonos SG, Antonopoulos D, Soucacos PN, Papagelopoulos PJ. Effect of sensory re-education after low median nerve complete transection and repair. J Hand Surg Am. 2009;34(7):1210–5.PubMedCrossRefGoogle Scholar
  134. 134.
    Rosen B, Lundborg G. Sensory re-education after nerve repair: aspects of timing. Handchir Mikrochir Plast Chir. 2004;36(1):8–12.PubMedCrossRefGoogle Scholar
  135. 135.
    Paula MH, Barbosa RI, Marcolino AM, Elui VM, Rosen B, Fonseca MC. Early sensory re-education of the hand after peripheral nerve repair based on mirror therapy: a randomized controlled trial. Braz J Phys Ther. 2016;20(1):58–65.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Georgios N. Panagopoulos
    • 1
  • Panayiotis D. Megaloikonomos
    • 1
  • Andreas F. Mavrogenis
    • 1
    Email author
  1. 1.First Department of OrthopaedicsNational and Kapodistrian University of Athens, School of MedicineAthensGreece

Personalised recommendations