Advertisement

Stem Cells and Tendon Regeneration

  • Hamid Karimi
  • Kamal Seyed-Forootan
  • Ali-Mohammad Karimi
Chapter

Abstract

Tendon injury and rupture of tendons, specifically the Achilles tendon and rotator cuff injury, are frequent events. And the techniques of repairing tendons are constantly improving every day. One of the complications after repair is the risk of re-rupture that is reported in 28–32% of cases. The new method for treatment of tendon injury is cell therapy, which can use matured cells like tenocytes or progenitor cells such as stem cells. Tenocytes are difficult to culture and they may lose their phenotype after few passages. But stem cells, especially mesenchymal stem cells (MSC), have promising results. They can easily culture, proliferate, differentiate, and be grafted into the site of tendon injury and with the help of scaffolds and growth factors they can regenerate the tendon. The most frequent stem cells that have been used for this purpose are TDSC and BMSC. Most of the stem cells can be used either autologous or allogeneic, as they have low immunogenicity. These cells can secret special bioactive factors to help to proliferate and differentiate the stem cells and to have immune-regulatory function. Many studies have proven that stem cells can prevent inflammatory reactions and in turn prevent adhesions after healing of the tendon. The most frequent scaffolds that have been used included decellularized tendon, PLGA and (PCL + mGLT), and PLCGA. The stem cells can be delivered during surgery and suturing of the tendon, by percutaneous injection and by inducing and migrating endogenously. The growth factors that are used include hepatocyte growth factor, human platelet-derived growth factor-BB, intelukein-6, tumor growth factor beta (TGF-B), bone morphogenetic proteins (BMP), chemokine ligand-13 (CXCL-13), early growth response-1 (EGR-1), Mohawk (MKX), parathyroid hormone (PTH 1-34), inhibitors of TGF1, myostatin, TGF-B3, and VEGF. The repaired tendons have better strength and have low risk of re-rupture.

Keywords

Stem cell Regeneration Tendon Injury Repairs 

References

  1. 1.
    Yin Z, Guo J, Wu TY, Chen X, Xu LL, Lin SE, Sun YX, Chan KM, Ouyang H, Li G. Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem Cells Transl Med. 2016;5(8):1106–16.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lui PP. Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem Cells Cloning. 2015;8:163–74.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Neckař P, Syková E. Stem cells in orthopaedics. Cas Lek Cesk. 2015;154(3):107–9.PubMedGoogle Scholar
  4. 4.
    Zhang K, Asai S, Yu B, Enomoto-Iwamoto M. IL-1β irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro. Biochem Biophys Res Commun. 2015;463(4):667–72.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Valencia Mora M, Ruiz Ibán MA, Díaz Heredia J, Barco Laakso R, Cuéllar R, García Arranz M. Stem cell therapy in the management of shoulder rotator cuff disorders. World J Stem Cells. 2015;7(4):691–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Hernigou P, Merouse G, Duffiet P, Chevalier N, Rouard H. Reduced levels of mesenchymal stem cells at the tendon-bone interface tuberosity in patients with symptomatic rotator cuff tear. Int Orthop. 2015;39(6):1219–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Shapiro E, Grande D, Drakos M. Biologics in Achilles tendon healing and repair: a review. Curr Rev Musculoskelet Med. 2015;8(1):9–17.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bíró V. Use of tissue engineering in the reconstruction of flexor tendon injuries of the hand. Orv Hetil. 2015;156(6):216–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen L, Liu JP, Tang KL, Wang Q, Wang GD, Cai XH, Liu XM. Tendon derived stem cells promote platelet-rich plasma healing in collagenase-induced rat Achilles tendinopathy. Cell Physiol Biochem. 2014;34(6):2153–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev. 2015;84:240–56.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Font Tellado S, Bonani W, Balmayor ER, Foehr P, Motta A, Migliaresi C, van Griensven M. Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue Eng Part A. 2017;23(15–16):859–72.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Linderman SW, Gelberman RH, Thomopoulos S, Shen H. Cell and biologic-based treatment of flexor tendon injuries. Oper Tech Orthop. 2016;26(3):206–15.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hsieh CF, Alberton P, Loffredo-Verde E, Volkmer E, Pietschmann M, Müller PE, Schieker M, Docheva D. Periodontal ligament cells as alternative source for cell-based therapy of tendon injuries: in vivo study of full-size Achilles tendon defect in a rat model. Eur Cell Mater. 2016;32:228–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Vieira MH, Oliveira RJ, Eça LP, Pereira IS, Hermeto LC, Matuo R, Fernandes WS, Silva RA, Antoniolli AC. Therapeutic potential of mesenchymal stem cells to treat Achilles tendon injuries. Genet Mol Res. 2014;13(4):10434–49.PubMedCrossRefGoogle Scholar
  15. 15.
    Meyer GA, Farris AL, Sato E, Gibbons M, Lane JG, Ward SR, Engler AJ. Muscle progenitor cell regenerative capacity in the torn rotator cuff. J Orthop Res. 2015;33(3):421–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dale TP, Mazher S, Webb WR, Zhou J, Maffulli N, Chen GQ, El Haj AJ, Forsyth NR. Tenogenic differentiation of human embryonic stem cells. Tissue Eng Part A. 2018;24(5–6):361–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Peach MS, Ramos DM, James R, Morozowich NL, Mazzocca AD, Doty SB, Allcock HR, Kumbar SG, Laurencin CT. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS One. 2017;12(4):e0174789.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bottagisio M, Lopa S, Granata V, Talò G, Bazzocchi C, Moretti M, Barbara LA. Different combinations of growth factors for the tenogenic differentiation of bone marrow mesenchymal stem cells in monolayer culture and in fibrin-based three-dimensional constructs. Differentiation. 2017;95:44–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Hao ZC, Wang SZ, Zhang XJ, Lu J. Stem cell therapy: a promising biological strategy for tendon-bone healing after anterior cruciate ligament reconstruction. Cell Prolif. 2016;49(2):154–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen L, Jiang C, Tiwari SR, Shrestha A, Xu P, Liang W, Sun Y, He S, Cheng B. TGIF1 gene silencing in tendon-derived stem cells improves the tendon-to-bone insertion site regeneration. Cell Physiol Biochem. 2015;37(6):2101–14.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lipner J, Shen H, Cavinatto L, Liu W, Havlioglu N, Xia Y, Galatz LM, Thomopoulos S. In vivo evaluation of adipose-derived stromal cells delivered with a nanofiber scaffold for tendon-to-bone repair. Tissue Eng Part A. 2015;21(21–22):2766–74.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Veronesi F, Torricelli P, Della Bella E, Pagani S, Fini M. In vitro mutual interaction between tenocytes and adipose-derived mesenchymal stromal cells. Cytotherapy. 2015;17(2):215–23.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Orr SB, Chainani A, Hippensteel KJ, Kishan A, Gilchrist C, Garrigues NW, Ruch DS, Guilak F, Little D. Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering. Acta Biomater. 2015;24:117–26.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tao X, Liu J, Chen L, Zhou Y, Tang K. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair. Cell Physiol Biochem. 2015;35(2):699–709.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Valencia Mora M, Antuña Antuña S, García Arranz M, Carrascal MT, Barco R. Application of adipose tissue-derived stem cells in a rat rotator cuff repair model. Injury. 2014;45(Suppl 4):S22–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Xu W, Sun Y, Zhang J, Xu K, Pan L, He L, Song Y, Njunge L, Xu Z, Chiang MY, Sung KL, Chuong CM, Yang L. Perivascular-derived stem cells with neural crest characteristics are involved in tendon repair. Stem Cells Dev. 2015;24(7):857–68.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kim YS, Sung CH, Chung SH, Kwak SJ, Koh YG. Does an injection of adipose-derived mesenchymal stem cells loaded in fibrin glue influence rotator cuff repair outcomes? A clinical and magnetic resonance imaging study. Am J Sports Med. 2017;45(9):2010–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Pas HI, Moen MH, Haisma HJ, Winters M. No evidence for the use of stem cell therapy for tendon disorders: a systematic review. Br J Sports Med. 2017;51(13):996–1002.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Pillai DS, Dhinsa BS, Khan W. Tissue engineering in Achilles tendon reconstruction; the role of stem cells, growth factors and scaffolds. Curr Stem Cell Res Ther. 2017;12(6):506–12.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7(1):131.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Youngstrom DW, Barrett JG. Engineering tendon: scaffolds, bioreactors, and models of regeneration. Stem Cells Int. 2016;2016:3919030.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang B, Luo Q, Halim A, Ju Y, Morita Y, Song G. Directed differentiation and paracrine mechanisms of mesenchymal stem cells: potential implications for tendon repair and regeneration. Curr Stem Cell Res Ther. 2017;12(6):447–54.PubMedGoogle Scholar
  33. 33.
    Qin TW, Sun YL, Thoreson AR, Steinmann SP, Amadio PC, An KN, Zhao C. Effect of mechanical stimulation on bone marrow stromal cell-seeded tendon slice constructs: a potential engineered tendon patch for rotator cuff repair. Biomaterials. 2015;51:43–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu Y, Xu J, Xu L, Wu T, Sun Y, Lee YW, Wang B, Chan HC, Jiang X, Zhang J, Li G. Cystic fibrosis transmembrane conductance regulator mediates tenogenic differentiation of tendon-derived stem cells and tendon repair: accelerating tendon injury healing by intervening in its downstream signaling. FASEB J. 2017;31(9):3800–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang J, Wang JH. Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord. 2010;11:10.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yao L, Bestwick CS, Bestwick LA, Maffulli N, Aspden RM. Phenotypic drift in human tenocyte culture. Tissue Eng. 2006;12(7):1843–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Schwarz R, Colarusso L, Doty P. Maintenance of differentiation in primary cultures of avian tendon cells. Exp Cell Res. 1976;102(1):63–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Jelinsky SA, Archambault J, Li L, Seeherman H. Tendon-selective genes identified from rat and human musculoskeletal tissues. J Orthop Res. 2010;28(3):289–97.PubMedGoogle Scholar
  39. 39.
    Wang A, Mackie K, Breidahl W, Wang T, Zheng MH. Evidence for the durability to autologous tenocyte injection for treatment of chronic resistant lateral epicondylitis: mean 4.5-year clinical follow-up. Am J Sports Med. 2015;43:1775–83.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Clarke AW, Alyas F, Morris T, Robertson CJ, Bell J, Connell DA. Skin-derived tenocyte-like cells for the treatment of patellar tendinopathy. Am J Sports Med. 2011;39(3):614–23.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Boháč M, Csöbönyeiová M, Kupcová I, Zamborský R, Fedeleš J, Koller J. Stem cell regenerative potential for plastic and reconstructive surgery. Cell Tissue Bank. 2016;17(4):735–44.PubMedCrossRefGoogle Scholar
  42. 42.
    Dyment NA, Galloway JL. Regenerative biology of tendon: mechanisms for renewal and repair. Curr Mol Biol Rep. 2015;1(3):124–31.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, Bauer G, Nolta JA. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev. 2010;62(12):1167–74.PubMedCrossRefGoogle Scholar
  44. 44.
    Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–64.CrossRefPubMedGoogle Scholar
  45. 45.
    Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56(3):283–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Okech W, Kuo CK. Informing stem cell-based tendon tissue engineering approaches with embryonic tendon development. Adv Exp Med Biol. 2016;920:63–77.PubMedCrossRefGoogle Scholar
  47. 47.
    Bavin EP, Smith O, Baird AE, Smith LC, Guest DJ. Equine induced pluripotent stem cells have a reduced tendon differentiation capacity compared to embryonic stem cells. Front Vet Sci. 2015;2:55.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Zhang C, Yuan H, Liu H, Chen X, Lu P, Zhu T, Yang L, Yin Z, Heng BC, Zhang Y, Ouyang H. Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials. 2015;53:716–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Le W, Yao J. The effect of myostatin (GDF-8) on proliferation and tenocyte differentiation of rat bone marrow-derived mesenchymal stem cells. J Hand Surg Asian Pac Vol. 2017;22(2):200–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Tan EW, Schon LC. Mesenchymal stem cell-bearing sutures for tendon repair and healing in the foot and ankle. Foot Ankle Clin. 2016;21(4):885–90.CrossRefPubMedGoogle Scholar
  51. 51.
    Julianto I, Rindastuti Y. Topical delivery of mesenchymal stem cells “secretomes” in wound repair. Acta Med Indones. 2016;48(3):217–20.PubMedGoogle Scholar
  52. 52.
    Yang G, Rothrauff BB, Lin H, Yu S, Tuan RS. Tendon-derived extracellular matrix enhances transforming growth factor-β3-induced tenogenic differentiation of human adipose-derived stem cells. Tissue Eng Part A. 2017;23(3-4):166–76.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Veronesi F, Salamanna F, Tschon M, Maglio M, Nicoli Aldini N, Fini M. Mesenchymal stem cells for tendon healing: what is on the horizon? J Tissue Eng Regen Med. 2017;11(11):3202–19.PubMedCrossRefGoogle Scholar
  54. 54.
    Sevivas N, Teixeira FG, Portugal R, Araújo L, Carriço LF, Ferreira N, Vieira da Silva M, Espregueira-Mendes J, Anjo S, Manadas B, Sousa N, Salgado AJ. Mesenchymal stem cell secretome: a potential tool for the prevention of muscle degenerative changes associated with chronic rotator cuff tears. Am J Sports Med. 2017;45(1):179–88.PubMedCrossRefGoogle Scholar
  55. 55.
    Nowotny J, Aibibu D, Farack J, Nimtschke U, Hild M, Gelinsky M, Kasten P, Cherif C. Novel fiber-based pure chitosan scaffold for tendon augmentation: biomechanical and cell biological evaluation. J Biomater Sci Polym Ed. 2016;27(10):917–36.PubMedCrossRefGoogle Scholar
  56. 56.
    Hsieh CF, Alberton P, Loffredo-Verde E, Volkmer E, Pietschmann M, Müller P, Schieker M, Docheva D. Scaffold-free Scleraxis-programmed tendon progenitors aid in significantly enhanced repair of full-size Achilles tendon rupture. Nanomedicine (Lond). 2016;11(9):1153–67.CrossRefGoogle Scholar
  57. 57.
    Aktas E, Chamberlain CS, Saether EE, Duenwald-Kuehl SE, Kondratko-Mittnacht J, Stitgen M, Lee JS, Clements AE, Murphy WL, Vanderby R. Immune modulation with primed mesenchymal stem cells delivered via biodegradable scaffold to repair an Achilles tendon segmental defect. J Orthop Res. 2017;35(2):269–80.PubMedCrossRefGoogle Scholar
  58. 58.
    Nagura I, Kokubu T, Mifune Y, Inui A, Takase F, Ueda Y, Kataoka T, Kurosaka M. Characterization of progenitor cells derived from torn human rotator cuff tendons by gene expression patterns of chondrogenesis, osteogenesis, and adipogenesis. J Orthop Surg Res. 2016;11:40.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tornero-Esteban P, Hoyas JA, Villafuertes E, Rodríguez-Bobada C, López-Gordillo Y, Rojo FJ, Guinea GV, Paleczny A, Lópiz-Morales Y, Rodriguez-Rodriguez L, Marco F, Fernández-Gutiérrez B. Efficacy of supraspinatus tendon repair using mesenchymal stem cells along with a collagen I scaffold. J Orthop Surg Res. 2015;10:124.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Younesi M, Islam A, Kishore V, Anderson JM, Akkus O. Tenogenic induction of human MSCs by anisotropically aligned collagen biotextiles. Adv Funct Mater. 2014;24(36):5762–70.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tian F, Ji XL, Xiao WA, Wang B, Wang F. CXCL13 promotes the effect of bone marrow mesenchymal stem cells (MSCs) on tendon-bone healing in rats and in C3HIOT1/2 cells. Int J Mol Sci. 2015;16(2):3178–87.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mohanty N, Gulati BR, Kumar R, Gera S, Kumar S, Kumar P, Yadav PS. Phenotypical and functional characteristics of mesenchymal stem cells derived from equine umbilical cord blood. Cytotechnology. 2016;68(4):795–807.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang W, Yang Y, Zhang K, Li Y, Fang G. Weft-knitted silk-poly(lactide-co-glycolide) mesh scaffold combined with collagen matrix and seeded with mesenchymal stem cells for rabbit Achilles tendon repair. Connect Tissue Res. 2015;56(1):25–34.PubMedCrossRefGoogle Scholar
  64. 64.
    Ramdass B, Koka PS. Ligament and tendon repair through regeneration using mesenchymal stem cells. Curr Stem Cell Res Ther. 2015;10(1):84–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Teng C, Zhou C, Xu D, Bi F. Combination of platelet-rich plasma and bone marrow mesenchymal stem cells enhances tendon-bone healing in a rabbit model of anterior cruciate ligament reconstruction. J Orthop Surg Res. 2016;11(1):96.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wu T, Liu Y, Wang B, Sun Y, Xu J, Yuk-Wai LW, Xu L, Zhang J, Li G. The use of cocultured mesenchymal stem cells with tendon-derived stem cells as a better cell source for tendon repair. Tissue Eng Part A. 2016;22(19-20):1229–40.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhi Y, Liu W, Zhang P, Jiang J, Chen S. Electrospun silk fibroin mat enhances tendon-bone healing in a rabbit extra-articular model. Biotechnol Lett. 2016;38(10):1827–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Degen RM, Carbone A, Carballo C, Zong J, Chen T, Lebaschi A, Ying L, Deng XH, Rodeo SA. The effect of purified human bone marrow-derived mesenchymal stem cells on rotator cuff tendon healing in an athymic rat. Art Ther. 2016;32(12):2435–43.Google Scholar
  69. 69.
    Kong X, Ni M, Zhang G, Chai W, Li X, Li Y, Wang Y. Application of tendon-derived stem cells and bone marrow-derived mesenchymal stem cells for tendon injury repair in rat model. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2016;45(2):112–9.PubMedGoogle Scholar
  70. 70.
    Gao Y, Zhang Y, Lu Y, Wang Y, Kou X, Lou Y, Kang Y. TOB1 deficiency enhances the effect of bone marrow-derived mesenchymal stem cells on tendon-bone healing in a rat rotator cuff repair model. Cell Physiol Biochem. 2016;38(1):319–29.PubMedCrossRefGoogle Scholar
  71. 71.
    He M, Gan AW, Lim AY, Goh JC, Hui JH, Chong AK. Bone marrow derived mesenchymal stem cell augmentation of rabbit flexor tendon healing. Hand Surg. 2015;20(3):421–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Omi R, Gingery A, Steinmann SP, Amadio PC, An KN, Zhao C. Rotator cuff repair augmentation in a rat model that combines a multilayer xenograft tendon scaffold with bone marrow stromal cells. J Shoulder Elbow Surg. 2016;25(3):469–77.PubMedCrossRefGoogle Scholar
  73. 73.
    Havlas V, Kotaška J, Koníček P, Trč T, Konrádová Š, Kočí Z, Syková E. Use of cultured human autologous bone marrow stem cells in repair of a rotator cuff tear: preliminary results of a safety study. Acta Chir Orthop Traumatol Cech. 2015;82(3):229–34.PubMedGoogle Scholar
  74. 74.
    Ning LJ, Zhang YJ, Zhang Y, Qing Q, Jiang YL, Yang JL, Luo JC, Qin TW. The utilization of decellularized tendon slices to provide an inductive microenvironment for the proliferation and tenogenic differentiation of stem cells. Biomaterials. 2015;52:539–50.PubMedCrossRefGoogle Scholar
  75. 75.
    Li J, Chen L, Sun L, Chen H, Sun Y, Jiang C, Cheng B. Silencing of TGIF1 in bone mesenchymal stem cells applied to the post-operative rotator cuff improves both functional and histologic outcomes. J Mol Histol. 2015;46(3):241–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Gelberman RH, Linderman SW, Jayaram R, Dikina AD, Sakiyama-Elbert S, Alsberg E, Thomopoulos S, Shen H. Combined administration of ASCs and BMP-12 promotes an m2 macrophage phenotype and enhances tendon healing. Clin Orthop Relat Res. 2017;475(9):2318–31.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Shen H, Kormpakis I, Havlioglu N, Linderman SW, Sakiyama-Elbert SE, Erickson IE, Zarembinski T, Silva MJ, Gelberman RH, Thomopoulos S. The effect of mesenchymal stromal cell sheets on the inflammatory stage of flexor tendon healing. Stem Cell Res Ther. 2016;7(1):144.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Crowe CS, Chattopadhyay A, McGoldrick R, Chiou G, Pham H, Chang J. Characteristics of reconstituted lyophilized tendon hydrogel: an injectable scaffold for tendon regeneration. Plast Reconstr Surg. 2016;137(3):843–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Crowe CS, Chiou G, McGoldrick R, Hui K, Pham H, Chang J. Tendon regeneration with a novel tendon hydrogel: in vitro effects of platelet-rich plasma on rat adipose-derived stem cells. Plast Reconstr Surg. 2015;135(6):981e–9e.PubMedCrossRefGoogle Scholar
  80. 80.
    Chiou GJ, Crowe C, McGoldrick R, Hui K, Pham H, Chang J. Optimization of an injectable tendon hydrogel: the effects of platelet-rich plasma and adipose-derived stem cells on tendon healing in vivo. Tissue Eng Part A. 2015;21(9-10):1579–86.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Gelberman RH, Shen H, Kormpakis I, Rothrauff B, Yang G, Tuan RS, Xia Y, Sakiyama-Elbert S, Silva MJ, Thomopoulos S. Effect of adipose-derived stromal cells and BMP12 on intrasynovial tendon repair: a biomechanical, biochemical, and proteomics study. J Orthop Res. 2016;34(4):630–40.PubMedCrossRefGoogle Scholar
  82. 82.
    Yin Z, Hu JJ, Yang L, Zheng ZF, An CR, Wu BB, Zhang C, Shen WL, Liu HH, Chen JL, Heng BC, Guo GJ, Chen X, Ouyang HW. Single-cell analysis reveals a nestin(+) tendon stem/progenitor cell population with strong tenogenic potentiality. Sci Adv. 2016;2(11):e1600874.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hu C, Zhang Y, Tang K, Luo Y, Liu Y, Chen W. Downregulation of CITED2 contributes to TGFβ-mediated senescence of tendon-derived stem cells. Cell Tissue Res. 2017;368(1):93–104.PubMedCrossRefGoogle Scholar
  84. 84.
    Chen H, Ge HA, Wu GB, Cheng B, Lu Y, Jiang C. Autophagy prevents oxidative stress-induced loss of self-renewal capacity and stemness in human tendon stem cells by reducing ROS accumulation. Cell Physiol Biochem. 2016;39(6):2227–38.PubMedCrossRefGoogle Scholar
  85. 85.
    Leong DJ, Sun HB. Mesenchymal stem cells in tendon repair and regeneration: basic understanding and translational challenges. Ann N Y Acad Sci. 2016;1383(1):88–96.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang JH, Nirmala X. Application of tendon stem/progenitor cells and platelet-rich plasma to treat tendon injuries. Oper Tech Orthop. 2016;26(2):68–72.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wang B, Guo J, Feng L, Suen CW, Fu WM, Zhang JF, Li G. MiR124 suppresses collagen formation of human tendon derived stem cells through targeting egr1. Exp Cell Res. 2016;347(2):360–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang JH, Komatsu I. Tendon stem cells: mechanobiology and development of tendinopathy. Adv Exp Med Biol. 2016;920:53–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang J, Yuan T, Wang JH. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats. Oncotarget. 2016;7(8):8498–512.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Guo J, Chan KM, Zhang JF, Li G. Tendon-derived stem cells undergo spontaneous tenogenic differentiation. Exp Cell Res. 2016;341(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Lui PP, Wong OT, Lee YW. Transplantation of tendon-derived stem cells pre-treated with connective tissue growth factor and ascorbic acid in vitro promoted better tendon repair in a patellar tendon window injury rat model. Cytotherapy. 2016;18(1):99–112.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Chen W, Tang H, Liu X, Zhou M, Zhang J, Tang K. Dickkopf1 Up-Regulation induced by a high concentration of dexamethasone promotes rat tendon stem cells to differentiate into adipocytes. Cell Physiol Biochem. 2015;37(5):1738–49.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Zhou Y, Zhang J, Wu H, Hogan MV, Wang JH. The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells - implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Res Ther. 2015;6:173.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Al-Ani MKh XK, Sun Y, Pan L, Xu Z, Yang L. Study of bone marrow mesenchymal and tendon-derived stem cells transplantation on the regenerating effect of Achilles tendon ruptures in rats. Stem Cells Int. 2015;2015:984146.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Tokunaga T, Shukunami C, Okamoto N, Taniwaki T, Oka K, Sakamoto H, Ide J, Mizuta H, Hiraki Y. FGF-2 stimulates the growth of tenogenic progenitor cells to facilitate the generation of tenomodulin-positive tenocytes in a rat rotator cuff healing model. Am J Sports Med. 2015;43(10):2411–22.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Runesson E, Ackermann P, Karlsson J, Eriksson BI. Nucleostemin- and Oct 3/4-positive stem/progenitor cells exhibit disparate anatomical and temporal expression during rat Achilles tendon healing. BMC Musculoskelet Disord. 2015;16:212.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lee CH, Lee FY, Tarafder S, Kao K, Jun Y, Yang G, Mao JJ. Harnessing endogenous stem/progenitor cells for tendon regeneration. J Clin Invest. 2015;125(7):2690–701.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lui PP. Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ - update and future development. Stem Cell Res Ther. 2015;6:106.PubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chen W, Tang H, Zhou M, Hu C, Zhang J, Tang K. Dexamethasone inhibits the differentiation of rat tendon stem cells into tenocytes by targeting the scleraxis gene. J Steroid Biochem Mol Biol. 2015;152:16–24.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Popov C, Burggraf M, Kreja L, Ignatius A, Schieker M, Docheva D. Mechanical stimulation of human tendon stem/progenitor cells results in upregulation of matrix proteins, integrins and MMPs, and activation of p38 and ERK1/2 kinases. BMC Mol Biol. 2015;16:6.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Liu J, Tao X, Chen L, Han W, Zhou Y, Tang K. CTGF positively regulates BMP12 induced tenogenic differentiation of tendon stem cells and signaling. Cell Physiol Biochem. 2015;35(5):1831–45.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Ilić N, Atkinson K. Manufacturing and use of human placenta-derived mesenchymal stromal cells for phase I clinical trials: establishment and evaluation of a protocol. Vojnosanit Pregl. 2014;71(7):651–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Petrou IG, Grognuz A, Hirt-Burri N, Raffoul W, Applegate LA. Cell therapies for tendons: old cell choice for modern innovation. Swiss Med Wkly. 2014;144:w13989.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Zong JC, Mosca MJ, Degen RM, Lebaschi A, Carballo C, Carbone A, Cong GT, Ying L, Deng XH, Rodeo SA. Involvement of Indian hedgehog signaling in mesenchymal stem cell-augmented rotator cuff tendon repair in an athymic rat model. J Shoulder Elbow Surg. 2017;26(4):580–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Xiao L, Nasu M. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. Stem Cells Cloning. 2014;7:89–99.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Górski B. Gingiva as a new and the most accessible source of mesenchymal stem cells from the oral cavity to be used in regenerative therapies. Postepy Hig Med Dosw (Online). 2016;70:858–71.CrossRefGoogle Scholar
  107. 107.
    Gomiero C, Bertolutti G, Martinello T, Van Bruaene N, Broeckx SY, Patruno M, Spaas JH. Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology. Vet Res Commun. 2016;40(1):39–48.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Park GY, Kwon DR, Lee SC. Regeneration of full-thickness rotator cuff tendon tear after ultrasound-guided injection with umbilical cord blood-derived mesenchymal stem cells in a rabbit model. Stem Cells Transl Med. 2015;4(11):1344–51.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Jang KM, Lim HC, Jung WY, Moon SW, Wang JH. Efficacy and safety of human umbilical cord blood-derived mesenchymal stem cells in anterior cruciate ligament reconstruction of a rabbit model: new strategy to enhance tendon graft healing. Arthroscopy. 2015;31(8):1530–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Takayama K, Kawakami Y, Mifune Y, Matsumoto T, Tang Y, Cummins JH, Greco N, Kuroda R, Kurosaka M, Wang B, Fu FH, Huard J. The effect of blocking angiogenesis on anterior cruciate ligament healing following stem cell transplantation. Biomaterials. 2015;60:9–19.PubMedCrossRefGoogle Scholar
  111. 111.
    Jiang D, Yang S, Gao P, Zhang Y, Guo T, Lin H, Geng H. Combined effect of ligament stem cells and umbilical-cord-blood-derived CD34+ cells on ligament healing. Cell Tissue Res. 2015;362(3):587–95.PubMedCrossRefGoogle Scholar
  112. 112.
    Weninger P, Wepner F, Kissler F, Enenkel M, Wurnig C. Anatomic double-bundle reinsertion after acute proximal anterior cruciate ligament injury using Knotless PushLock Anchors. Arthrosc Tech. 2015;4(1):e1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Taniguchi N, Suenaga N, Oizumi N, Miyoshi N, Yamaguchi H, Inoue K, Chosa E. Bone marrow stimulation at the footprint of arthroscopic surface-holding repair advances cuff repair integrity. J Shoulder Elbow Surg. 2015;24(6):860–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Otabe K, Nakahara H, Hasegawa A, Matsukawa T, Ayabe F, Onizuka N, Inui M, Takada S, Ito Y, Sekiya I, Muneta T, Lotz M, Asahara H. Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Orthop Res. 2015;33(1):1–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Lee DJ, Southgate RD, Farhat YM, Loiselle AE, Hammert WC, Awad HA, O’Keefe RJ. Parathyroid hormone 1-34 enhances extracellular matrix deposition and organization during flexor tendon repair. J Orthop Res. 2015;33(1):17–24.PubMedCrossRefGoogle Scholar
  116. 116.
    Govoni M, Berardi AC, Muscari C, Campardelli R, Bonafè F, Guarnieri C, Reverchon E, Giordano E, Maffulli N, Della Porta G. An engineered multiphase three-dimensional microenvironment to ensure the controlled delivery of cyclic strain and human growth differentiation factor 5 for the tenogenic commitment of human bone marrow mesenchymal stem cells. Tissue Eng Part A. 2017;23(15–16):811–22.PubMedCrossRefGoogle Scholar
  117. 117.
    Ficklscherer A, Serr M, Loitsch T, Niethammer TR, Lahner M, Pietschmann MF, Müller PE. The influence of different footprint preparation techniques on tissue regeneration in rotator cuff repair in an animal model. Arch Med Sci. 2017;13(2):481–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Leone L, Raffa S, Vetrano M, Ranieri D, Malisan F, Scrofani C, Vulpiani MC, Ferretti A, Torrisi MR, Visco V. Extracorporeal Shock Wave Treatment (ESWT) enhances the in vitro-induced differentiation of human tendon-derived stem/progenitor cells (hTSPCs). Oncotarget. 2016;7(6):6410–23.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Yu Y, Zhou Y, Cheng T, Lu X, Yu K, Zhou Y, Hong J, Chen Y. Hypoxia enhances tenocyte differentiation of adipose-derived mesenchymal stem cells by inducing hypoxia-inducible factor-1α in a co-culture system. Cell Prolif. 2016;49(2):173–84.PubMedCrossRefGoogle Scholar
  120. 120.
    Chailakhyan RK, Shekhter AB, Ivannikov SV, Tel'pukhov VI, Suslin DS, Gerasimov YV, Tonenkov AM, Grosheva AG, Panyushkin PV, Moskvina IL, Vorob'eva NN, Bagratashvili VN. Reconstruction of ligament and tendon defects using cell technologies. Bull Exp Biol Med. 2017;162(4):563–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Chainani A, Little D. Current status of tissue-engineered scaffolds for rotator cuff repair. Tech Orthop. 2016;31(2):91–7.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Jiang D, Gao P, Zhang Y, Yang S. Combined effects of engineered tendon matrix and GDF-6 on bone marrow mesenchymal stem cell-based tendon regeneration. Biotechnol Lett. 2016;38(5):885–92.PubMedCrossRefGoogle Scholar
  123. 123.
    Yang G, Lin H, Rothrauff BB, Yu S, Tuan RS. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomater. 2016;35:68–76.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Seyed-Forootan K, Karimi H, Dayani AR. PRP and metaplasia in repaired tendon. J Acute Dis. 2014;3(4):284–9.CrossRefGoogle Scholar
  125. 125.
    Kadakia AR, Dekker RG 2nd, Ho BS. Acute Achilles tendon ruptures: an update on treatment. J Am Acad Orthop Surg. 2017;25(1):23–31.PubMedCrossRefGoogle Scholar
  126. 126.
    Ross D, Maerz T, Kurdziel M, Hein J, Doshi S, Bedi A, Anderson K, Baker K. The effect of granulocyte-colony stimulating factor on rotator cuff healing after injury and repair. Clin Orthop Relat Res. 2015;473(5):1655–64.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Lui PP. Identity of tendon stem cells—how much do we know? Identity of tendon stem cells—how much do we know? J Cell Mol Med. 2013;17(1):55–64.PubMedCrossRefGoogle Scholar
  128. 128.
    Lee SY, Kim W, Lim C, Chung SG. Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: a pilot study. Stem Cells. 2015;33:2995–3005.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ilic N, Atkinson K. Manufacturing and use of human placenta-derived mesenchymal stromal cells for phase I clinical trials: establishment and evaluation of a protocol. Vojnosanit Pregl. 2014;71(7):651–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Lange-Consiglio A, Rossi D, Tassan S, Perego R, Cremonesi F, Parolini O. Conditioned medium from horse amniotic membrane-derived multipotent progenitor cells: immunomodulatory activity in vitro and first clinical application in tendon and ligament injuries in vivo. Stem Cells Dev. 2013;22(22):3015–24.PubMedCrossRefGoogle Scholar
  131. 131.
    Manning CN, Martel C, Sakiyama-Elbert SE, Silva MJ, Shah S, Gelberman RH, Thomopoulos S. Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation in vitro. Stem Cell Res Ther. 2015;6:74.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hamid Karimi
    • 1
  • Kamal Seyed-Forootan
    • 2
  • Ali-Mohammad Karimi
    • 3
  1. 1.Department of Plastic and Reconstructive SurgeryHazrat Fatemeh Hospital, Iran University of Medical SciencesTehranIran
  2. 2.Department of Plastic and Reconstructive SurgeryIran University of Medical SciencesTehranIran
  3. 3.School of Medicine, Iran University of Medical SciencesTehranIran

Personalised recommendations