Advertisement

Skeletal Muscle Restoration Following Volumetric Muscle Loss: The Therapeutic Effects of a Biologic Surgical Mesh

  • Jenna L. Dziki
  • Jonas Eriksson
  • Stephen F. BadylakEmail author
Chapter

Abstract

Biologic surgical meshes composed of extracellular matrix (ECM) are a promising treatment option for volumetric muscle loss (VML). The advantages of ECM-based therapies include the lack of a requirement for exogenous stem cell delivery and stimulation of a constructive, pro-healing immune response. This acellular approach lowers the regulatory and technical hurdles associated with stem cell administration, has superior outcomes compared to physical therapy alone or muscle grafting, and has the potential to improve quality of life by promoting functional myogenesis. This chapter reviews the current standard of care for VML and the preclinical and clinical studies supporting the use of biologic mesh as an inductive myogenesis template.

Keywords

Volumetric muscle loss Extracellular matrix Myogenesis Surgical mesh 

References

  1. 1.
    Grogan BF, Hsu JR. Skeletal trauma research, volumetric muscle loss. J Am Acad Orthop Surg. 2011;19(Suppl 1):S35–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Dziki JB, Badylak S, Yabroudi M, Sicari B, Ambrosio A, Stearns K, Turner N, Wyse A, Boninger ML, Brown EHP, Rubin JP. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen Med. 2016;1:16008.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sicari BM, Rubin JP, Dearth CL, Wolf MT, Ambrosio F, Boninger M, Turner NJ, Weber DJ, Simpson TW, Wyse A, Brown EH, Dziki JL, Fisher LE, Brown S, Badylak SF. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med. 2014;6(234):234–58.CrossRefGoogle Scholar
  4. 4.
    Corona BT, Rivera JC, Owens JG, Wenke JC, Rathbone CR. Volumetric muscle loss leads to permanent disability following extremity trauma. J Rehabil Res Dev. 2015;52(7):785–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Corona BT, Wenke JC, Ward CL. Pathophysiology of volumetric muscle loss injury. Cells Tissues Organs. 2016;202(3–4):180–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Lin CH, Lin YT, Yeh JT, Chen CT. Free functioning muscle transfer for lower extremity posttraumatic composite structure and functional defect. Plast Reconstr Surg. 2007;119(7):2118–26.PubMedCrossRefGoogle Scholar
  7. 7.
    Paro J, Chiou G, Sen SK. Comparing muscle and fasciocutaneous free flaps in lower extremity reconstruction—does it matter? Ann Plast Surg. 2016;76(Suppl 3):S213–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Patzkowski JC, Owens JG, Blanck RV, Kirk KL, Hsu JR. Deployment after limb salvage for high-energy lower-extremity trauma. J Trauma Acute Care Surg. 2012;73(2 Suppl 1):S112–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Corona BT, Henderson BE, Ward CL, Greising SM. Contribution of minced muscle graft progenitor cells to muscle fiber formation after volumetric muscle loss injury in wild-type and immune deficient mice. Physiol Rep. 2017;5(7):e13249.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ward CL, Ji L, Corona BT. An autologous muscle tissue expansion approach for the treatment of volumetric muscle loss. Biores Open Access. 2015;4(1):198–208.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Valdivia M, Vega-Macaya F, Olguin P. Mechanical control of myotendinous junction formation and tendon differentiation during development. Front Cell Dev Biol. 2017;5:26.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Qin YX, Hu M. Mechanotransduction in musculoskeletal tissue regeneration: effects of fluid flow, loading, and cellular-molecular pathways. Biomed Res Int. 2014;2014:863421.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Dziki JL, Giglio RM, Sicari BM, Wang DS, Gandhi RM, Londono R, Dearth CL, Badylak SF. The effect of mechanical loading upon extracellular matrix bioscaffold-mediated skeletal muscle remodeling. Tissue Eng Part A. 2018;24(1–2):34–46.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ambrosio F, Kadi F, Lexell J, Fitzgerald GK, Boninger ML, Huard J. The effect of muscle loading on skeletal muscle regenerative potential: an update of current research findings relating to aging and neuromuscular pathology. Am J Phys Med Rehabil. 2009;88(2):145–55.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, Blau HM. Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol. 2005;279(2):336–44.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ambrosio F, Ferrari RJ, Fitzgerald GK, Carvell G, Boninger ML, Huard J. Functional overloading of dystrophic mice enhances muscle-derived stem cell contribution to muscle contractile capacity. Arch Phys Med Rehabil. 2009;90(1):66–73.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Corona BT, Ward CL, Baker HB, Walters TJ, Christ GJ. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng Part A. 2014;20(3–4):705–15.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Corona BT, Machingal MA, Criswell T, Vadhavkar M, Dannahower AC, Bergman C, Zhao W, Christ GJ. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng Part A. 2012;18(11–12):1213–28.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Rossi CA, Flaibani M, Blaauw B, Pozzobon M, Figallo E, Reggiani C, Vitiello L, Elvassore N, De Coppi P. In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB J. 2011;25(7):2296–304.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 2005;122(2):289–301.CrossRefGoogle Scholar
  21. 21.
    Webster MT, Manor U, Lippincott-Schwartz J, Fan CM. Intravital imaging reveals ghost fibers as architectural units guiding myogenic progenitors during regeneration. Cell Stem Cell. 2016;18(2):243–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Quarta M, Cromie M, Chacon R, Blonigan J, Garcia V, Akimenko I, Hamer M, Paine P, Stok M, Shrager JB, Rando TA. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat Commun. 2017;8:15613.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005;309(5743):2064–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Mueller GM, O’Day T, Watchko JF, Ontell M. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice. Hum Gene Ther. 2002;13(9):1081–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Garg K, Corona BT, Walters TJ. Losartan administration reduces fibrosis but hinders functional recovery after volumetric muscle loss injury. J Appl Physiol (1985). 2014;117(10):1120–31.CrossRefGoogle Scholar
  26. 26.
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101(4):890–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fadok VA, Bratton DL, Guthrie L, Henson PM. Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J Immunol. 2001;166(11):6847–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B. Inflammatory monocytes recruited after skeletal muscle injury switch into anti-inflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mounier R, Théret M, Arnold L, Cuvellier S, Bultot L, Göransson O, Sanz N, Ferry A, Sakamoto K, Foretz M, Viollet B, Chazaud B. AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 2013;18(2):251–64.PubMedCrossRefGoogle Scholar
  30. 30.
    Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A. 1986;83(12):4167–71.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–73.CrossRefGoogle Scholar
  32. 32.
    Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG, Rosenthal N, Nerlov C. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A. 2009;106(41):17475–80.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sadtler K, Estrellas K, Allen BW, Wolf MT, Fan H, Tam AJ, Patel CH, Luber BS, Wang H, Wagner KR, Powell JD, Housseau F, Pardoll DM, Elisseeff JH. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science. 2016;352(6283):366–70.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Reing JE, Zhang L, Myers-Irvin J, Cordero KE, Freytes DO, Heber-Katz E, Bedelbaeva K, McIntosh D, Dewilde A, Braunhut SJ, Badylak SF. Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng Part A. 2009;15(3):605–14.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Dietz GW, Heppel LA. Studies on the uptake of hexose phosphates. II. The induction of the glucose 6-phosphate transport system by exogenous but not by endogenously formed glucose 6-phosphate. J Biol Chem. 1971;246(9):2885–90.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Karalaki M, Fili S, Philippou A, Koutsilieris M. Muscle regeneration: cellular and molecular events. In Vivo. 2009;23(5):779–96.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Valentin JE, Stewart-Akers AM, Gilbert TW, Badylak SF. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A. 2009;15(7):1687–94.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000;5(1):40–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Agrawal V, Brown BN, Beattie AJ, Gilbert TW, Badylak SF. Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues. J Tissue Eng Regen Med. 2009;3(8):590–600.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Turner NJ, Yates AJ Jr, Weber DJ, Qureshi IR, Stolz DB, Gilbert TW, Badylak SF. Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction. Tissue Eng Part A. 2010;16(11):3309–17.PubMedCrossRefGoogle Scholar
  41. 41.
    Han N, Yabroudi MA, Stearns-Reider K, Helkowski W, Sicari BM, Rubin JP, Badylak SF, Boninger ML, Ambrosio F. Electrodiagnostic evaluation of individuals implanted with extracellular matrix for the treatment of volumetric muscle injury: case series. Phys Ther. 2016;96(4):540–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Vorotnikova E, McIntosh D, Dewilde A, Zhang J, Reing JE, Zhang L, Cordero K, Bedelbaeva K, Gourevitch D, Heber-Katz E, Badylak SF, Braunhut SJ. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 2010;29(8):690–700.PubMedCrossRefGoogle Scholar
  43. 43.
    Li F, Li W, Johnson S, Ingram D, Yoder M, Badylak S. Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. Endothelium. 2004;11(3–4):199–206.PubMedCrossRefGoogle Scholar
  44. 44.
    Ghuman H, Massensini AR, Donnelly J, Kim SM, Medberry CJ, Badylak SF, Modo M. ECM hydrogel for the treatment of stroke: characterization of the host cell infiltrate. Biomaterials. 2016;91:166–81.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Crapo PM, Tottey S, Slivka PF, Badylak SF. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng Part A. 2014;20(1–2):313–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jenna L. Dziki
    • 1
    • 2
  • Jonas Eriksson
    • 1
    • 2
  • Stephen F. Badylak
    • 1
    • 3
    • 4
    Email author
  1. 1.McGowan Institute for Regenerative MedicinePittsburghUSA
  2. 2.Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA
  4. 4.Department of BioengineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations