Stem Cells and Ear Regeneration

  • Hamid Karimi
  • Seyed-Abolhassan Emami
  • Ali-Mohammad Karimi


Repair of total human ear loss due to trauma or cancer or congenital lack of ears is one of the challenging issues in plastic and reconstructive surgery. Reconstruction of the human ear with costal cartilage has been introduced by Tanzer, Brent, Firmin, and Nagata. But it needs 2–4 sessions of operation and had some morbidity in donor site. Newer techniques focused on using stem cells. Best option for regeneration of ear cartilages is bone marrow stem cells. They can be cultured in chondrogenic media or co-culture with chondrocytes or culture in a cartilage extracellular matrix or cartilage scaffold. Therefore they can multiply, differentiate, and produce millions of chondrocytes from the patient’s own stem cells. These cells will be seeded over an external or internal framework and with the help of in vivo culture a new cartilage with special configuration of ear framework would be regenerated. These frameworks should go under maturation process and can be used as a new ear framework for reconstruction of a missed ear.

Regenerated ears have similar shape so they are very suitable for bilateral reconstruction of missed ears. This method is a one-stage operation and without donor-site morbidity and complications and without any chance for graft rejection or extrusion.


Stem cell Cartilage Ear Regeneration Framework 


  1. 1.
    Nagata S. A new method of total reconstruction of the auricle for microtia. Plast Reconstr Surg. 1993;92:187–201.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    De La Cruz A, Kesser BW. Management of the unilateral atretic ear. In: Pensak M, editor. Controversies in otolaryngology—head and neck surgery. New York: Thieme Medical Publishers; 1999. p. 381–5.Google Scholar
  3. 3.
    Kountakis SE, Helidonis E, Jahrsdoerfer RA. Microtia grade as an indicator of middle ear development in aural atresia. Arch Otolaryngol Head Neck Surg. 1995;121(8):885–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Vrabec JT, Lin JW. Inner ear anomalies in congenital aural atresia. Otol Neurotol. 2010;31:1421.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Liu Y, Zhang L, et al. In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials. 2010;31:2176–83.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tanzer RC. Total reconstruction of the external ear. Plast Reconstr Surg. 1959;23:1–15.CrossRefGoogle Scholar
  7. 7.
    Brent B. Technical advances with autogenous rib cartilage grafts—a personal review of 1,200 cases. Plast Reconstr Surg. 1999;104(2):319–34.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Brent B. Auricular repair with autogenous rib cartilage grafts: two decades of experience with 600 cases. Plast Reconstr Surg. 1992;90(3):355–74.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Firmin F. Microtie Reconstruction par la Technique de Brent. Ann Chir Plast Esthet. 1992;1:119.Google Scholar
  10. 10.
    Nagata S. Modification of the stages in total reconstruction of the auricle: Part I. Grafting the three-dimensional costal cartilage framework for lobule-type microtia. Plast Reconstr Surg. 1994;93(2):221–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Brent B. The team approach to treating the microtia-atresia patient. Otolaryngol Clin N Am. 2000;33(6):1353–65.CrossRefGoogle Scholar
  12. 12.
    Song C, Jiao F, Zhuang H. [Clinical study on external ear reconstruction using expanded postauricular flap and medpor framework]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007;21(1):40–3.Google Scholar
  13. 13.
    Isogai N, Asamura S, Higashi T, Ikada Y, Morita S, Hillyer J, Jacquet R, Landis WJ. Tissue engineering of an auricular cartilage model utilizing cultured chondrocyte-poly(l-lactide-epsilon-caprolactone) scaffolds. Tissue Eng. 2004;10(5–6):673–87.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Henderson JH, Welter JF, Mansour JM, Niyibizi C, Caplan AI, Dennis JE. Cartilage tissue engineering for laryngotracheal reconstruction: comparison of chondrocytes from three anatomic locations in the rabbit. Tissue Eng. 2007;13(4):843–53.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Naumann A, Aigner J, Staudenmaier R, Seemann M, Bruening R, Englmeier KH, Kadegge G, Pavesio A, Kastenbauer E, Berghaus A. Clinical aspects and strategy for biomaterial engineering of an auricle based on three-dimensional stereolithography. Eur Arch Otorhinolaryngol. 2003;260(10):568–75.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kamil SH, Kojima K, Vacanti MP, Bonassar LJ, Vacanti CA, Eavey RD. In vitro tissue engineering to generate a human-sized auricle and nasal tip. Laryngoscope. 2003;113(1):90–4.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kelley TF, Sutton FM, Wallace VP, Wong BJ. Chondrocyte repopulation of allograft cartilage: a preliminary investigation and strategy for developing cartilage matrices for reconstruction. Otolaryngol Head Neck Surg. 2002;127(4):265–70.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Shin YS, Lee BH, Choi JW, Min BH, Chang JW, Yang SS, Kim CH. Tissue-engineered tracheal reconstruction using chondrocyte seeded on a porcine cartilage-derived substance scaffold. Int J Pediatr Otorhinolaryngol. 2014;78(1):32–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sterodimas A, de Faria J, Correa WE, Pitanguy I. Tissue engineering and auricular reconstruction: a review. J Plast Reconstr Aesthet Surg. 2009;62(4):447–52.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hong HJ, Lee JS, Choi JW, Min BH, Lee HB, Kim CH. Transplantation of autologous chondrocytes seeded on a fibrin/hyaluronan composite gel into tracheal cartilage defects in rabbits: preliminary results. Artif Organs. 2012;36(11):998–1006.PubMedCrossRefGoogle Scholar
  21. 21.
    Komura M, Komura H, Otani Y, Kanamori Y, Iwanaka T, Hoshi K, Tsuyoshi T, Tabata Y. The junction between hyaline cartilage and engineered cartilage in rabbits. Laryngoscope. 2013;123(6):1547–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Kang N, Liu X, Cao Y, Xiao R. [Comparison study of tissue engineered cartilage constructed with chondrocytes derived from porcine auricular and articular cartilage]. Zhonghua Zheng Xing Wai Ke Za Zhi. 2014;30(1):33–40.Google Scholar
  23. 23.
    Kusuhara H, Isogai N, Enjo M, Otani H, Ikada Y, Jacquet R, Lowder E, Landis WJ. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen. 2009;17(1):136–46.PubMedCrossRefGoogle Scholar
  24. 24.
    Yanaga H, Imai K, Fujimoto T, Yanaga K. Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia. Plast Reconstr Surg. 2009;124(3):817–25.CrossRefGoogle Scholar
  25. 25.
    Yanaga H, Imai K, Tanaka Y, Yanaga K. Two-stage transplantation of cell-engineered autologous auricular chondrocytes to regenerate chondrofat composite tissue: clinical application in regenerative surgery. Plast Reconstr Surg. 2013;132(6):1467–77.PubMedCrossRefGoogle Scholar
  26. 26.
    Rodriguez A, Cao YL, Ibarra C, Pap S, Vacanti M, Eavey RD, Vacanti CA. Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg. 1999;103(4):1111–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Park SS, Jin HR, Chi DH, Taylor RS. Characteristics of tissue-engineered cartilage from human auricular chondrocytes. Biomaterials. 2004;25(12):2363–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Fulco I, Miot S, Haug MD, Barbero A, Wixmerten A, Feliciano S, Wolf F, Jundt G, Marsano A, Farhadi J, Heberer M, Jakob M, Schaefer DJ, Martin I. Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet. 2014;384(9940):337–46.CrossRefGoogle Scholar
  29. 29.
    Ishak MF, See GB, Hui CK, Abdullah AB, Saim LB, Saim AB, Idrus RB. The formation of human auricular cartilage from microtic tissue: an in vivo study. Int J Pediatr Otorhinolaryngol. 2015;79(10):1634–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Shasti M, Jacquet R, McClellan P, Yang J, Matsushima S, Isogai N, Murthy A, Landis WJ. Effects of FGF-2 and OP-1 in vitro on donor source cartilage for auricular reconstruction tissue engineering. Int J Pediatr Otorhinolaryngol. 2014;78(3):416–22.CrossRefGoogle Scholar
  31. 31.
    Cheng Y, Cheng P, Xue F, Wu KM, Jiang MJ, Ji JF, Hang CH, Wang QP. Repair of ear cartilage defects with allogenic bone marrow mesenchymal stem cells in rabbits. Cell Biochem Biophys. 2014;70(2):1137–43.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Pleumeekers MM, Nimeskern L, Koevoet WL, Karperien M, Stok KS, van Osch GJ. Cartilage regeneration in the head and neck area: combination of ear or nasal chondrocytes and mesenchymal stem cells improves cartilage production. Plast Reconstr Surg. 2015;136(6):762e–74e.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wei B, Jin C, Xu Y, Tang C, Hu W, Wang L. [Effect of bone marrow mesenchymal stem cells-derived extracellular matrix scaffold on chondrogenic differentiation of marrow clot after microfracture of bone marrow stimulation in vitro]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2013;27(4):464–74.Google Scholar
  34. 34.
    Zhang L, He A, Yin Z, Yu Z, Luo X, Liu W, Zhang W, Cao Y, Liu Y, Zhou G. Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials. 2014;35(18):4878–87.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Wang M, Xia Y, Wang S. Experimental study on repair of articular cartilage defects with homograft of marrow mesenchymal stem cells seeded onto poly-l-lactic acid/gelatin. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2007;21(7):753–8.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen Y, Chen Y, Zhang S, Du X, Bai B. Parathyroid hormone-induced bone marrow mesenchymal stem cell chondrogenic differentiation and its repair of articular cartilage injury in rabbits. Med Sci Monit Basic Res. 2016;22:132–45.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Saha S, Kirkham J, Wood D, Curran S, Yang XB. Informing future cartilage repair strategies: a comparative study of three different human cell types for cartilage tissue engineering. Cell Tissue Res. 2013;352(3):495–507.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Xiang Z, Hu W, Kong Q, Zhou H, Zhang X. Preliminary study of mesenchymal stem cells-seeded type I collagen-glycosaminoglycan matrices for cartilage repair. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006;20(2):148–54.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Lü CW, Hu YY, Bai JP, Liu J, Meng GL, Lü R. Three dimensional induction of autologous mesenchymal stem cell and the effects on depressing long-term degeneration of tissue-engineering cartilage. Zhonghua Wai Ke Za Zhi. 2007;45(24):1717–21.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhou GD, Miao CL, Wang XY, Liu TY, Cui L, Liu W, Cao YL. [Experimental study of in vitro chondrogenesis by co-culture of b0one marrow stromal cells and chondrocytes]. Zhonghua Yi Xue Za Zhi. 2004;84(20):1716–20.Google Scholar
  41. 41.
    Qing C, Wei-ding C, Wei-min F. Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components. Braz J Med Biol Res. 2011;44(4):303–10.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    He X, Feng B, Huang C, Wang H, Ge Y, Hu R, Yin M, Xu Z, Wang W, Fu W, Zheng J. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. Int J Nanomedicine. 2015;10:2089–99.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Deng J, She R, Huang W, Dong Z, Mo G, Liu B. A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. J Mater Sci Mater Med. 2013;24(8):2037–46.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ba R, Wei J, Li M, Cheng X, Zhao Y, Wu W. Cell-bricks based injectable niche guided persistent ectopic chondrogenesis of bone marrow-derived mesenchymal stem cells and enabled nasal augmentation. Stem Cell Res Ther. 2015;6:16.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chen Z, Wei J, Zhu J, Liu W, Cui J, Li H, Chen F. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage. Stem Cell Res Ther. 2016;7(1):70.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zheng YH, Su K, Kuang SJ, Li H, Zhang ZG. [New bone and cartilage tissues formed from human bone marrow mesenchymal stem cells derived from human condyle in vivo]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2012;47(1):10–3.Google Scholar
  47. 47.
    Ge W, Jiang W, Li C, You J, Qiu L, Zhao C. [Conduction of injectable cartilage using fibrin sealant and human bone marrow mesenchymal stem cells in vivo]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006;20(2):139–43.Google Scholar
  48. 48.
    Utomo L, Pleumeekers MM, Nimeskern L, Nürnberger S, Stok KS, Hildner F, van Osch GJ. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction. Biomed Mater. 2015;10(1):015010.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Qi H, Jie Y, Chen L, Jiang L, Gao X, Sun L. Preparation of acellular dermal matrix as a kind of scaffold for cartilage tissue engineering and its biocompatibility. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014;28(6):768–72.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Sato Y, Wakitani S, Takagi M. Xeno-free and shrinkage-free preparation of scaffold-free cartilage-like disc-shaped cell sheet using human bone marrow mesenchymal stem cells. J Biosci Bioeng. 2013;116(6):734–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu Y, He L, Tian J. [Effect of basic fibroblast growth factor and parathyroid hormone-related protein on early and late chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells induced by transforming growth factor beta 1]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2013;27(2):199–206 (in Chinese).Google Scholar
  52. 52.
    Jakobsen RB, Shahdadfar A, Reinholt FP, Brinchmann JE. Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue. Knee Surg Sports Traumatol Arthrosc. 2010;18(10):1407–16. Epub 2009 Dec 18. Erratum in: Knee Surg Sports Traumatol Arthrosc. 2014 Jul;22(7):1711-4.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang H, Li Y, Chen J, Wang X, Zhao F, Cao S. [Chondrogenesis of bone marrow mesenchymal stem cells induced by transforming growth factor beta3 gene in Diannan small-ear pigs]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014;28(2):149–54.Google Scholar
  54. 54.
    Kang N, Liu X, Yan L, Wang Q, Cao Y, Xiao R. Different ratios of bone marrow mesenchymal stem cells and chondrocytes used in tissue-engineered cartilage and its application for human ear-shaped substitutes in vitro. Cells Tissues Organs. 2013;198(5):357–66.PubMedCrossRefGoogle Scholar
  55. 55.
    Karimi H, Emami SA, Olad-Gubad MK. Bone marrow stem cells and ear framework reconstruction. J Craniofac Surg. 2016;27(8):2192–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Carbone A, Valente M, Annacontini L, Castellani S, Di Gioia S, Parisi D, Rucci M, Belgiovine G, Colombo C, Di Benedetto A, Mori G, Lo Muzio L, Maiorella A, Portincasa A, Conese M. Adipose-derived mesenchymal stromal (stem) cells differentiate to osteoblast and chondroblast lineages upon incubation with conditioned media from dental pulp stem cell-derived osteoblasts and auricle cartilage chondrocytes. J Biol Regul Homeost Agents. 2016;30(1):111–22.PubMedGoogle Scholar
  57. 57.
    Cai Z, Pan B, Jiang H, Zhang L. Chondrogenesis of human adipose-derived stem cells by in vivo co-graft with auricular chondrocytes from Microtia. Aesthet Plast Surg. 2015;39(3):431–9.CrossRefGoogle Scholar
  58. 58.
    Bahrani H, Razmkhah M, Ashraf MJ, Tanideh N, Chenari N, Khademi B, Ghaderi A. Differentiation of adipose-derived stem cells into ear auricle cartilage in rabbits. J Laryngol Otol. 2012;126(8):770–4.CrossRefGoogle Scholar
  59. 59.
    Meric A, Yenigun A, Yenigun VB, Dogan R, Ozturan O. Comparison of chondrocytes produced from adipose tissue-derived stem cells and cartilage tissue. J Craniofac Surg. 2013;24(3):830–3.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sterodimas A, de Faria J. Human auricular tissue engineering in an immunocompetent animal model. Aesthet Surg J. 2013;33(2):283–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Dahlin RL, Kinard LA, Lam J, Needham CJ, Lu S, Kasper FK, Mikos AG. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials. 2014;35(26):7460–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Liu K, Zhou GD, Liu W, Zhang WJ, Cui L, Liu X, Liu TY, Cao Y. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Biomaterials. 2008;29(14):2183–92.CrossRefGoogle Scholar
  63. 63.
    Raghunath J, Sutherland J, Salih V, Mordan N, Butler PE, Seifalian AM. Chondrogenic potential of blood acquired mesenchymal progenitor cells. J Plast Reconstr Aesthet Surg. 2010;63:841–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Xu J-W, Shane Johnson T, et al. Tissue-engineered flexible ear-shaped cartilage. Plast Reconstr Surg. 2005;115:1633.PubMedCrossRefGoogle Scholar
  65. 65.
    Togo T, Utani A, Naitoh M, Ohta M, Tsuji Y, Morikawa N, Nakamura M, Suzuki S. Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Lab Invest. 2006;86(5):445–57.PubMedCrossRefGoogle Scholar
  66. 66.
    Kagimoto S, Takebe T, Kobayashi S, Yabuki Y, Hori A, Hirotomi K, Mikami T, Uemura T, Maegawa J, Taniguchi H. Autotransplantation of monkey ear perichondrium-derived progenitor cells for cartilage reconstruction. Cell Transplant. 2016;25(5):951–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Jiang Y, Cai Y, Zhang W, Yin Z, Hu C, Tong T, Lu P, Zhang S, Neculai D, Tuan RS, Ouyang HW. Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Transl Med. 2016;5(6):733–44. Epub 2016 Apr 29. PubMed PMID: 27130221; PubMed Central PMCID: PMC4878331CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Choi WH, Kim HR, Lee SJ, Jeong N, Park SR, Choi BH, Min BH. Fetal cartilage-derived cells have stem cell properties and are a highly potent cell source for cartilage regeneration. Cell Transplant. 2016;25(3):449–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Pomerantseva I, Bichara DA, Tseng A, Cronce MJ, Cervantes TM, Kimura AM, Neville CM, Roscioli N, Vacanti JP, Randolph MA, Sundback CA. Ear-shaped stable auricular cartilage engineered from extensively expanded chondrocytes in an immunocompetent experimental animal model. Tissue Eng Part A. 2016;22(3–4):197–207.PubMedCrossRefGoogle Scholar
  70. 70.
    Liao HT, Zheng R, Liu W, Zhang WJ, Cao Y, Zhou G. Prefabricated, ear-shaped cartilage tissue engineering by scaffold-free porcine chondrocyte membrane. Plast Reconstr Surg. 2015;135(2):313e–21e.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Neumeister MW, Wu T, Chambers C. Vascularized tissue-engineered ears. Plast Reconstr Surg. 2006;117(1):116–22.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    von Bomhard A, Veit J, Bermueller C, Rotter N, Staudenmaier R, Storck K. The HN. Prefabrication of 3D cartilage constructs: towards a tissue engineered auricle—a model tested in rabbits. PLoS One. 2013;8(8):e71667. eCollection 2013. Erratum in: PLoS One. 2014;9(11):e113017CrossRefGoogle Scholar
  73. 73.
    Ruszymah BH, Chua KH, Mazlyzam AL, Aminuddin BS. Formation of tissue engineered composite construct of cartilage and skin using high density polyethylene as inner scaffold in the shape of human helix. Int J Pediatr Otorhinolaryngol. 2011;75(6):805–10.CrossRefGoogle Scholar
  74. 74.
    Nayyer L, Patel K, et al. Revolution and challenge in auricular cartilage reconstruction. Plast Reconstr Surg. 2012;129(5):1123–37.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Cronin TD. Use of a silastic frame for total and subtotal reconstruction of the external ear: preliminary report. Plast Reconstr Surg. 1966;37:399.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Cronin TD, Greenberg RL, Brauer RO. Follow-up study of silastic frame for reconstruction of external ear. Plast Reconstr Surg. 1968;42:522.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cronin TD, Ascough BM. Silastic ear construction. Clin Plast Surg. 1978;5:367.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Reinisch J. Microtia reconstruction using a polyethylene implant: an eight year surgical experience. In: Paper presented at the 1999 annual meeting of the American Association of Plastic Surgeons. Colorado Springs, CO; 1999 May 5.Google Scholar
  79. 79.
    Reinisch JF, Lewin S. Ear reconstruction using a porous polyethylene framework and temporoparietal fascia flap. Facial Plast Surg. 2009;25(3):181–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Romo T 3rd, Morris LG, Reitzen SD, Ghossaini SN, Wazen JJ, Kohan D. Reconstruction of congenital microtia-atresia: outcomes with the Medpor/bone-anchored hearing aid-approach. Ann Plast Surg. 2009;62(4):384–9.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Eyre DR, Dickson IR, Van Ness KP. Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem J. 1988;252:495–500.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bank RM, Bayliss FPJG, Lafeber AM, Tekoppele J. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. Biochem J. 1998;330:345–51.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Brommer H, Brama PAJ, Laasanen MS, Helminen HJ, van Weeren PR, Jurvelin JS. Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis. Equine Vet J. 2005;37(2):148–54.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Williamson AK, Chen AC, Masuda K, Thonar EJ, Sah RL. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res. 2003;21(5):872–80.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bichara DA, O’Sullivan NA, Pomerantseva I, Zhao X, Sundback CA, Vacanti JP, et al. The tissue-engineered auricle: past, present, and future. Tissue Eng Part B Rev. 2012;18:51–61.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Zopf DA, Flanagan CL, Nasser HB, Mitsak AG, Huq FS, Rajendran V, et al. Biomechanical evaluation of human and porcine auricular cartilage. Laryngoscope. 2015;125(8):E262–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Khan IM, Evans SL, Young RD, Blain EJ, Quantock AJ, Avery N, et al. Fibroblast growth factor 2 and transforming growth factor β1 induce precocious maturation of articular cartilage. Arthritis Rheum. 2011;63(11):3417–27.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Khan IM, Francis L, Theobald PS, Perni S, Young RD, Prokopovich P, et al. In vitro growth factor-induced bio engineering of mature articular cartilage. Biomaterials. 2013;34(5):1478–87.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100:297–302.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hamid Karimi
    • 1
  • Seyed-Abolhassan Emami
    • 1
  • Ali-Mohammad Karimi
    • 2
  1. 1.Department of Plastic and Reconstructive SurgeryHazrat Fatemeh Hospital, Iran University of Medical SciencesTehranIran
  2. 2.School of Medicine, Iran University of Medical SciencesTehranIran

Personalised recommendations