Advertisement

Drug Delivery Advances for the Regeneration of Aged Skin

  • Daniela Castillo Pérez
  • Matthias M. AitzetmüllerEmail author
  • Philipp Neßbach
  • Dominik Duscher
Chapter

Abstract

Due to a permanent shift of the human population towards higher age, also skin aging, its underlying mechanisms and possibilities to reverse these alterations have gained more attention. Although main triggering factors for aging skin degeneration have been identified, mitigating the signs of cutaneous aging is an ongoing scientific challenge. One promising alley of research is drug delivery systems (DDS) for systemic or local administration of regenerative compounds. DDS can enhance the efficacy of regenerative agents while minimizing side effects and enable the specific targeting of certain structures within the integument.

Keywords

Drug delivery Skin aging Aging Regeneration Rejuvenation Skin barrier 

References

  1. 1.
    Reddy VJ, Radhakrishnan S, Ravichandran R, Mukherjee S, Balamurugan R, Sundarrajan S, Ramakrishna S. Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen. 2013;21(1):1–16.CrossRefGoogle Scholar
  2. 2.
    Korrapati PS, Karthikeyan K, Satish A, Krishnaswamy VR, Venugopal JR, Ramakrishna S. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mat Sci Eng C Mater Biol Appl. 2016;67:747–65.CrossRefGoogle Scholar
  3. 3.
    Tobin DJ. Introduction to skin aging. J Tissue Viability. 2017;26(1):37–46.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gragnani A, Mac Cornick S, Chominski V, de Noronha SMR, de Noronha SAAC, Ferreira LM. Review of major theories of skin aging. Adv Aging Res. 2014;3(04):265.CrossRefGoogle Scholar
  5. 5.
    Farage MA, Miller KW, Elsner P, Maibach HI. Characteristics of the aging skin. Adv Wound Care. 2013;2(1):5–10.CrossRefGoogle Scholar
  6. 6.
    Krutmann J. Skin aging. In: Krutmann J, Humbert P, editors. Nutrition for healthy skin. Berlin: Springer; 2010. p. 15–24.CrossRefGoogle Scholar
  7. 7.
    Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, Gurtner GC. Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology. 2016;62(2):216–25.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kamolz LP, Griffith M, Finnerty C, Kasper C. Skin regeneration, repair, and reconstruction. Biomed Res Int. 2015;2015:892031.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9(1):283–9.CrossRefGoogle Scholar
  10. 10.
    National Institute on Aging. Global health and aging. 2011. https://www.nia.nih.gov/research/dbsr/global-aging. Accessed 3 Jun 2018.
  11. 11.
    Mustoe T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg. 2004;187(5):S65–70.CrossRefGoogle Scholar
  12. 12.
    Sheikhpour M, Barani L, Kasaeian A. Biomimetics in drug delivery systems: a critical review. J Control Release. 2017;253:97–109.PubMedCrossRefGoogle Scholar
  13. 13.
    Devi VK, Jain N, Valli KS. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev. 2010;4(7):27.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Park K. Controlled drug delivery systems: past forward and future back. J Control Release. 2014;190:3–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yun Y, Lee BK, Park K. Controlled drug delivery systems: the next 30 years. Front Chem Sci Eng. 2014;8(3):276–9.CrossRefGoogle Scholar
  16. 16.
    Bertens C, Gijs M, Nuijts R, van den Biggelaar F. Topical drug delivery devices: a review. Exp Eye Res. 2018;168:149–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Shargel L, Yu A, Wu-Pong S. Introduction to biopharmaceutics and pharmacokinetics. In: Shargel L, Yu A, Wu-Pong S, editors. Applied biopharmaceutics and pharmacokinetics. 6th ed. New York: McGraw-Hill; 2012. p. 1–17.Google Scholar
  18. 18.
    Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi H-G, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review. J Control Release. 2017;258:226–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Tong R, Christian DA, Tang L, Cabral H, Baker JR, Kataoka K, Discher DE, Cheng J. Nanopolymeric therapeutics. MRS Bull. 2009;34(6):422–31.CrossRefGoogle Scholar
  20. 20.
    Ramasamy T, Kim JO, Yong CS, Umadevi K, Rana D, Jiménez C, Campos J, Haidar ZS. Novel core–shell nanocapsules for the tunable delivery of bioactive rhEGF: formulation, characterization and cytocompatibility studies. J Biomater Tiss Eng. 2015;5(9):730–43.CrossRefGoogle Scholar
  21. 21.
    Ramasamy T, Kim JH, Choi JY, Tran TH, Choi H-G, Yong CS, Kim JO. pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy. J Mater Chem B. 2014;2(37):6324–33.CrossRefGoogle Scholar
  22. 22.
    Tran TN. Cutaneous drug delivery: an update. J Investig Dermatol Symp Proc. 2013;16:S67–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Alvarez-Román R, Naik A, Kalia Y, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99(1):53–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Blume-Peytavi U, Vogt A. Human hair follicle: reservoir function and selective targeting. Br J Dermatol. 2011;165(s2):13–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Chourasia R, Jain SK. Drug targeting through pilosebaceous route. Curr Drug Targets. 2009;10(10):950–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Baena-Aristizábal CM, Mora-Huertas CE. Micro, nano and molecular novel delivery systems as carriers for herbal materials. J Colloid Sci Biotechnol. 2013;2(4):263–97.CrossRefGoogle Scholar
  27. 27.
    Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol. 2012;1(2):147–68.CrossRefGoogle Scholar
  28. 28.
    Jada A. A special issue on inorganic colloidal particles, synthesis, surface properties and applications. J Colloid Sci Biotechnol. 2014;3(1):1–2.CrossRefGoogle Scholar
  29. 29.
    Sala M, Elaissari A, Fessi H. Advances in psoriasis physiopathology and treatments: up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J Control Release. 2016;239:182–202.CrossRefGoogle Scholar
  30. 30.
    Lira AAM, Cordo PL, Nogueira EC, Almeida EDP, Junior RAL, Nunes RS, Rogéria S, Bentley MVLB, Marchetti JM. Optimization of topical all-trans retinoic acid penetration using poly-dl-lactide and poly-dl-lactide-co-glycolide microparticles. J Colloid Sci Biotechnol. 2013;2(2):123–9.CrossRefGoogle Scholar
  31. 31.
    Rosset V, Ahmed N, Zaanoun I, Stella B, Fessi H, Elaissari A. Elaboration of argan oil nanocapsules containing naproxen for cosmetic and transdermal local application. J Colloid Sci Biotechnol. 2012;1(2):218–24.CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Brown MB, Jones SA. Pharmaceutical foams: are they the answer to the dilemma of topical nanoparticles? Nanomedicine. 2010;6(2):227–36.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Raza K, Singh B, Lohan S, Sharma G, Negi P, Yachha Y, Katare OP. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm. 2013;456(1):65–72.CrossRefGoogle Scholar
  34. 34.
    Pickart L, Vasquez-Soltero JM, Margolina A. GHK and DNA: resetting the human genome to health. Biomed Res Int. 2014;2014:151479.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Maquart FX, Pickart L, Laurent M, Gillery P, Monboisse JC, Borel JP. Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu2+. FEBS Lett. 1988;238(2):343–6.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Pickart L, Vasquez-Soltero JM, Margolina A. GHK peptide as a natural modulator of multiple cellular pathways in skin regeneration. Biomed Res Int. 2015;2015:648108.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Pereira RF, Barrias CC, Granja PL, Bartolo PJ. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine (Lond). 2013;8(4):603–21.CrossRefGoogle Scholar
  38. 38.
    Leonida MD, Kumar I. Bionanomaterials for skin regeneration. Cham: Springer Nature; 2016.CrossRefGoogle Scholar
  39. 39.
    Gregoriadis G, Florence AT. Liposomes in drug delivery. Drugs. 1993;45(1):15–28.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yu HY, Liao HM. Triamcinolone permeation from different liposome formulations through rat skin in vitro. Int J Pharm. 1996;127(1):1–7.CrossRefGoogle Scholar
  41. 41.
    Sinico C, Manconi M, Peppi M, Lai F, Valenti D, Fadda AM. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle–skin interaction. J Control Release. 2005;103(1):123–36.PubMedCrossRefGoogle Scholar
  42. 42.
    Brown GL, Curtsinger LJ, White M, Mitchell RO, Pietsch J, Nordquist R, von Fraunhofer A, Schultz GS. Acceleration of tensile strength of incisions treated with EGF and TGF-beta. Ann Surg. 1988;208(6):788.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gallarate M, Chirio D, Trotta M, Eugenia Carlotti M. Deformable liposomes as topical formulations containing α-tocopherol. J Dispers Sci Technol. 2006;27(5):703–13.CrossRefGoogle Scholar
  44. 44.
    Fesq H, Lehmann J, Kontny A, Erdmann I, Theiling K, Rother M, Ring J, Cevc G, Abeck D. Improved risk–benefit ratio for topical triamcinolone acetonide in Transfersome® in comparison with equipotent cream and ointment: a randomized controlled trial. Br J Dermatol. 2003;149(3):611–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Draelos ZD. Enhancement of topical delivery with nanocarriers. In: Nasir A, Friedman A, Wang S, editors. Nanotechnology in dermatology. New York: Springer; 2013. p. 87–93.CrossRefGoogle Scholar
  46. 46.
    Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–S55.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Jenning V, Schäfer-Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release. 2000;66(2–3):115–26.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Barry BW. Breaching the skin’s barrier to drugs. Nat Biotechnol. 2004;22(2):165.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.CrossRefGoogle Scholar
  50. 50.
    Schäfer-Korting M, Mehnert W, Korting H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59(6):427–43.CrossRefGoogle Scholar
  51. 51.
    Santos Maia C, Mehnert W, Schaller M, Korting H, Gysler A, Haberland A, Schäfer-Korting M. Drug targeting by solid lipid nanoparticles for dermal use. J Drug Target. 2002;10(6):489–95.PubMedCrossRefGoogle Scholar
  52. 52.
    Gainza G, Pastor M, Aguirre JJ, Villullas S, Pedraz JL, Hernandez RM, Igartua M. A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: in vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice. J Control Release. 2014;185:51–61.PubMedCrossRefGoogle Scholar
  53. 53.
    Ueda H, Tabata Y. Polyhydroxyalkanonate derivatives in current clinical applications and trials. Adv Drug Deliv Rev. 2003;55(4):501–18.PubMedCrossRefGoogle Scholar
  54. 54.
    Tateshita T, Ono I, Kaneko F. Effects of collagen matrix containing transforming growth factor (TGF)-β1 on wound contraction. J Dermatol Sci. 2001;27(2):104–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Inoue M, Ono I, Tateshita T, Kuroyanagi Y, Shioya N. Effect of a collagen matrix containing epidermal growth factor on wound contraction. Wound Repair Regen. 1998;6(3):213–22.PubMedCrossRefGoogle Scholar
  56. 56.
    Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv. 2014;4(47):24777–85.CrossRefGoogle Scholar
  57. 57.
    Shirazi RN, Aldabbagh F, Erxleben A, Rochev Y, McHugh P. Nanomechanical properties of poly (lactic-co-glycolic) acid film during degradation. Acta Biomater. 2014;10(11):4695–703.PubMedCrossRefGoogle Scholar
  58. 58.
    Mohamed A, Xing MM. Nanomaterials and nanotechnology for skin tissue engineering. Int J Burns Trauma. 2012;2(1):29.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Wong VW, Levi B, Rajadas J, Longaker MT, Gurtner GC. Stem cell niches for skin regeneration. Int J Biomater. 2012;2012:926059.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Huang S, Lu G, Wu Y, Jirigala E, Xu Y, Ma K, Fu X. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. J Dermatol Sci. 2012;66(1):29–36.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniela Castillo Pérez
    • 1
  • Matthias M. Aitzetmüller
    • 2
    • 3
    Email author
  • Philipp Neßbach
    • 2
  • Dominik Duscher
    • 4
  1. 1.Biotechnology Research CenterCosta Rica Institute of TechnologyCartagoCosta Rica
  2. 2.Department of Plastic and Hand Surgery, Klinikum Rechts der IsarTechnical University of MunichMunichGermany
  3. 3.Section of Plastic and Reconstructive Surgery, Department of Trauma, Hand and Reconstructive SurgeryWestfaelische Wilhelms, University of MuensterMuensterGermany
  4. 4.Department for Plastic Surgery and Hand Surgery, Division of Experimental Plastic SurgeryTechnical University of MunichMunichGermany

Personalised recommendations