Bacteriophages as Biocontrol Agents of Biofilm Infections Associated with Abiotic Prosthetic Devices

  • Shilpa Deshpande Kaistha
  • Pramila Devi Umrao
  • Ravish Katiyar
  • Neelima Deshpande


The use of abiotic prosthetic devices forms an integral component of regenerative medicine in case of tissue or organ failure. The biomaterials used for the devices are prone to microbial infections in the form of microbial biofilms. Biofilms are microbial colonies that adhere to abiotic or biotic surface and are characterized with the secretion of quorum sensing molecules and an enveloping exopolymeric matrix that protect its micro-residents from antimicrobial substances and immune response, making them highly recalcitrant and difficult to eradicate. Lytic bacteriophages are viruses that are bacteria-specific intracellular predators with the ability to penetrate microbial biofilms and eradicate them. The use of bacteriophages to treat microbial biofilm infections is gaining popularity as phage therapy, and this review explores the use of bacteriophage therapy in control of biofilm infections associated with abiotic prosthetic devices.


Biofilm Bacteriophages Quorum sensing Phage nanoparticle Abiotic prosthetic devices Biocontrol Device-related infections 



Research grant from Chhatrapati Shahu Ji Maharaj University supports the work on bacteriophage control that forms the basis of this manuscript.


  1. 1.
    Hutmatcher D. Regenerative medicine will impact, but not replace medical device industry. Expert Rev Med Devices. 2006;3(4):1745–2422.Google Scholar
  2. 2.
    Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64:323–34.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wagner C, Hänsch GM. Mechanisms of bacterial colonization of implants and host response. In: A modern approach to biofilm-reltaed orthopaedic implant infections advances in experimental medicine and biology. Cham: Springer; 2016. p. 15–27.CrossRefGoogle Scholar
  4. 4.
    Doll K, Jongsthaphongpun KL, Stumpp NS, Winkel A, Stiesch M. Quantifying implant-associated biofilms: comparison of microscopic, microbiologic and biochemical methods. J Microbiol Methods. 2016;130:61–8.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Pantanella F, Valenti P, Natalizi T, Passeri D, Berlutti F. Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig. 2013;25(1):31–42.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005;28(11):1062–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32.CrossRefGoogle Scholar
  9. 9.
    Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4(3):223–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Khelissa SO, Abdallah M, Jama C, Faille C, Chihib N-E. Bacterial contamination and biofilm formation on abiotic surfaces and strategies to overcome their persistence. J Mater Environ Sci. 2017;8(9):3326–46.Google Scholar
  11. 11.
    Hofer U. Biofilms: turning tides for quorum sensing. Nat Rev Microbiol. 2016;14(2):64–5.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D, Prasad RK, et al. Bacteriophages and its applications: an overview. Folia Microbiol (Praha). 2017;62(1):17–55.CrossRefGoogle Scholar
  13. 13.
    Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M, Łobocka M, Łusiak-Szelachowska M, Górski A. Bacteriophage procurement for therapeutic purposes. Front Microbiol. 2016;7:1177.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kaistha S, Umrao P. Bacteriophage for mitigation of multiple drug resistant biofilm forming pathogens. Recent Pat Biotechnol. 2016;10(2):184–94.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ackermann H-W, Węgrzyn G. General characteristics of bacteriophages. In: Phage therapy: current research and applications. Norfolk: Caister Academic Press; 2014. p. 43–56.Google Scholar
  16. 16.
    Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z. Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol. 2017;74(2):277–83.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014;5(1):226–35.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Vandenheuvel D, Lavigne R, Ussow HB, Brüssow H. Bacteriophage therapy: advances in formulation strategies and human clinical trials. Annu Rev Virol. 2015;2(1):599–618.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sulakvelidze A, Alavidze Z, Morris JG Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–59.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sunderland KS, Yang M, Mao C. Phage-enabled nanomedicine: from probes to therapeutics in precision medicine HHS public access. Angew Chem Int Ed Engl Febr. 2017;13(568):1964–92.CrossRefGoogle Scholar
  21. 21.
    Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci. 2008;18(9):1049–56.CrossRefGoogle Scholar
  22. 22.
    Laverty G, Gorman S, Gilmore B. Biofilms and implant associated infections. In: Barnes L, Cooper IR, editors. Biomaterials and medical device associated infections. Cambridge: Woodhead Publishers, Elsevier; 2015. p. 19–37.CrossRefGoogle Scholar
  23. 23.
    Berne C, Ducret A, Hardy GG, Brun YV. Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria. Microbiol Spectr. 2015;3(4):1–46.CrossRefGoogle Scholar
  24. 24.
    Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem. 2016;291(24):12547–55.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci. 2013;14(10):20983–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008;6(3):199–210.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    James SA, Powell LC, Wright CJ. Atomic force microscopy of biofilms—Imaging, interactions, and mechanics. In: Dhanasekaran D, editor. Microbial biofilms - importance and applications. Rijeka: Intech Ope; 2016.Google Scholar
  29. 29.
    Schlafer S, Meyer RL. Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods. 2017;138:50–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Papenfort K, Bassler BL. Quorum sensing signal–response systems in gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576–88.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li Y-H, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors. 2012;12(12):2519–38.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Vidal JE, Howery KE, Ludewick HP, Nava P, Klugman KP. Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells. Infect Immun. 2013;81(4):1341–53.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Koul S, Prakash J, Mishra A, Kalia VC. Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol. 2016;56(1):1–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol. 2010;59:253–68.CrossRefGoogle Scholar
  36. 36.
    Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014;18:96–104.PubMedCrossRefGoogle Scholar
  37. 37.
    Ueda A, Wood TK. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog. 2009;5(6):e1000483.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nickzad A, Déziel E. The involvement of rhamnolipids in microbial cell adhesion and biofilm development - an approach for control? Lett Appl Microbiol. 2014;58(5):447–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Singhai M, Malik A, Shahid M, Malik MA, Goyal R. A study on device-related infections with special reference to biofilm production and antibiotic resistance. J Glob Infect. 2012;4(4):193–8.CrossRefGoogle Scholar
  40. 40.
    Inacio RC, Klautau GB, Murça MAS, da Silva CB, Nigro S, Rivetti LA, et al. Microbial diagnosis of infection and colonization of cardiac implantable electronic devices by use of sonication. Int J Infect Dis. 2015;38:54–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Gominet M, Compain F, Beloin C, Lebeaux D. Central venous catheters and biofilms: where do we stand in 2017? APMIS. 2017;125(4):365–75.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Majumder MI, Ahmed T, Hossain D, Ali M, Islam B, Chowdhury NH. Bacteriology and antibiotic sensitivity patterns of urine and biofilm in patients with indwelling urinary catheter in a tertiary hospital in bangladesh. J Bacteriol Parasitol. 2014;5(3):1–5.CrossRefGoogle Scholar
  43. 43.
    Soto SM, M. S. Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv Biol. 2014;2014:1–13.CrossRefGoogle Scholar
  44. 44.
    Trampuz A, Zimmerli W. Diagnosis and treatment of implant-associated septic arthritis and osteomyelitis. Curr Infect Dis Rep. 2008;10(5):394–403.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    McConoughey SJ, Howlin R, Granger JF, Manring MM, Calhoun JH, Shirtliff M, et al. Biofilms in periprosthetic orthopedic infections. Future Microbiol. 2014;9(8):987–1007.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Antony S, Farran Y. Prosthetic joint and orthopedic device related infections. The role of biofilm in the pathogenesis and treatment. Infect Disord Drug Targets. 2016;16(1):22–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Baddour LM, Epstein AE, Erickson CC, Knight BP, Levison ME, Lockhart PB, et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation. 2010;121(3):458–77.PubMedCrossRefGoogle Scholar
  48. 48.
    Fernández-Barat L, Torres A. Biofilms in ventilator-associated pneumonia. Future Microbiol. 2016;11(12):1599–610.PubMedCrossRefGoogle Scholar
  49. 49.
    Danin P-E, Girou E, Legrand P, Louis B, Fodil R, Christov C, et al. Description and microbiology of endotracheal tube biofilm in mechanically ventilated subjects. Respir Care. 2015;60(1):21–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Katiyar R, Vishwakarma A, Kaistha SD. Analysis of biofilm formation and antibiotic resistance of microbial isolates from intraocular lens following conventional extracapsular cataract surgery. Int J Res Pure Appl Microbiol. 2012;2(2):20–4.Google Scholar
  51. 51.
    Bispo PJM, Haas W, Gilmore MS. Biofilms in infections of the eye. Pathogens. 2015;4(1):111–36.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015;86(2):147–58.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM. Definition, etiology, prevention and treatment of peri-implantitis—a review. Head Face Med. 2014;10:34.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Tavares F, Pereira J, Lima K, Carreiro A, Henriques B, Silva F, et al. Relation between dental implant joint surfaces and biofilm formation. Dentistry. 2015;5(5)Google Scholar
  55. 55.
    Kim K-K, Sung H-M. Outcomes of dental implant treatment in patients with generalized aggressive periodontitis: a systematic review. J Adv Prosthodont. 2012;4(4):210–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Auler ME, Morreira D, Rodrigues FFO, Abr Ão MS, Margarido PFR, Matsumoto FE, et al. Biofilm formation on intrauterine devices in patients with recurrent vulvovaginal candidiasis. Med Mycol. 2010;48(1):211–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Zahran KM, Agban MN, Ahmed SH, Hassan EA, Sabet MA. Patterns of Candida biofilm on intrauterine devices. J Med Microbiol. 2015;64(Pt_4):375–81.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Faller M, Kohler T. The status of biofilms in penile implants. Microorganisms. 2017;5(2):19–25.PubMedCentralCrossRefGoogle Scholar
  59. 59.
    Amalaradjou MAR, Venkitanaray K. Role of bacterial biofilms in catheter-associated urinary tract infections (CAUTI) and strategies for their control. In: Thomas N, editor. Recent Advances in the field of urinary tract infections. Vienna, Austria: InTech Open; 2013.Google Scholar
  60. 60.
    Yousif A, Jamal MA, Raad I. Biofilm-based central line-associated bloodstream infections. Adv Exp Med Biol. 2015;830:157–79.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Bauer TT, Torres A, Ferrer R, Heyer CM, Schultze-Werninghaus G, Rasche K. Biofilm formation in endotracheal tubes. Association between pneumonia and the persistence of pathogens. Monaldi Arch Chest Dis. 2002;57(1):84–7.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Nielsen JC, Gerdes JC, Varma N. Infected cardiac-implantable electronic devices: prevention, diagnosis, and treatment. Eur Heart J. 2015;36(37):2484–90.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Fong IW. New perspectives of infections in cardiovascular disease. Curr Cardiol Rev. 2009;5(2):87–104.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Paula A, Santos A, Watanabe E, De Andrade D. Clinical update biofilm on artificial pacemaker: fiction or reality? Arq Bras Cardiol. 2011;97(5):e120.Google Scholar
  65. 65.
    Ajdic D, Zoghbi Y, Gerth D, Panthaki ZJ, Thaller S. The relationship of bacterial biofilms and capsular contracture in breast implants. Aesthet Surg J. 2016;36(3):297–309.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, et al. Clinical aspects of phage therapy. Adv Virus Res. 2012;83:73–121.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Abedon ST. Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets? FEMS Microbiol Lett. 2016;363Google Scholar
  68. 68.
    Motlagh AM, Bhattacharjee AS, Goel R. Biofilm control with natural and genetically-modified phages. World J Microbiol Biotechnol. 2016;32(4):67.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146–50.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chan BK, Abedon ST. Phage therapy pharmacology. Phage cocktails Adv Appl Microbiol. 2012;78:1–23.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Yang SH, Chung J, Mcfarland S, Lee S-W. Assembly of Bacteriophage into functional materials. Chem Rec. 2013;13:43–59.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Pearson HA, Sahukhal GS, Elasri MO, Urban MW. Phage-bacterium war on polymeric surfaces: can surface-anchored bacteriophages eliminate microbial infections? Biomacromolecules. 2013;14(5):1257–61.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bean JE, Alves DR, Laabei M, Esteban PP, Thet NT, Enright MC, et al. Triggered release of bacteriophage K from agarose/hyaluronan hydrogel matrixes by Staphylococcus aureus virulence factors. Chem Mater. 2014;26(24):7201–8.CrossRefGoogle Scholar
  74. 74.
    Cao B, Yang M, Mao C. Phage as a genetically modifiable supramacromolecule in chemistry, Materials and Medicine. Acc Chem Res. 2016;49(6):1111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol. 2015;6(Article 755):1–18.Google Scholar
  76. 76.
    Gill JJ, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11(1):2–14.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111–4.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013;8(6):769–83.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Abdulamir AS, Jassim SAA, Hafidh RR, Bakar FA. The potential of bacteriophage cocktail in eliminating Methicillin-resistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes. Ann Clin Microbiol Antimicrob. 2015;14(1):49.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sagar SSSS, Kumar R, Kaistha SDSD. Efficacy of phage and ciprofloxacin co-therapy on the formation and eradication of Pseudomonas aeruginosa biofilms. Arab J Sci Eng. 2017;42(1):95–103.CrossRefGoogle Scholar
  81. 81.
    Nouraldin AAM, Baddour MM, Harfoush RAH, Essa SAM. Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria J Med. 2015;52(2):99–105.CrossRefGoogle Scholar
  82. 82.
    Chaudhry WN, Concepción-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. Rozen DE, editor. PLoS One. 2017;12(1):e0168615.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol. 2017;101(8):3103–19.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141–51.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Chan BK, Abedon ST. Bacteriophages and their enzymes in biofilm control. Curr Pharm Des. 2015;21(1):85–99.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Gerstmans H, Rodriguez-Rubio L, Lavigne R, Briers Y. From endolysins to Artilysin(R)s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem Soc Trans. 2016;44(1):123–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A. 2007;104(27):11197–202.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Pei R, Lamas-Samanamud GR. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol. 2014;80(17):5340–8.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Fernández L, González S, Campelo AB, Martínez B, Rodríguez A, García P. Downregulation of autolysin-encoding genes by phage-derived lytic proteins inhibits biofilm formation in Staphylococcus aureus. Antimicrob Agents Chemother. 2017;61(5):e02724–16.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Abouhmad A, Mamo G, Dishisha T, Amin MA, Hatti-Kaul R. T4 lysozyme fused with cellulose-binding module for antimicrobial cellulosic wound dressing materials. J Appl Microbiol. 2016;121(1):115–25.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep. 2016;6:26717.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Edgar R, Friedman N, Molshanski-Mor S, Qimron U. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl Environ Microbiol. 2012;78(3):744–51.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Jalasvuori M, Friman V-P, Nieminen A, Bamford JKH, Buckling A. Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Biol Lett. 2011;7(6):902–5.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Harrison E, Wood AJ, Dytham C, Pitchford JW, Truman J, Spiers A, et al. Bacteriophages limit the existence conditions for conjugative plasmids. MBio. 2015;6(3):e00586–15.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature. 2012;493(7432):429–32.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Palmer KL, Whiteley M. DMS3–42: the secret to CRISPR-dependent biofilm inhibition in Pseudomonas aeruginosa. J Bacteriol. 2011;193(14):3431–2.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Chaudhary K. BacteRiophage EXclusion (BREX): A novel anti-phage mechanism in the arsenal of bacterial defense system. J Cell Physiol. 2017;233(1):57–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA. 2015;112(23):7267–72.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Hargreaves KR, Kropinski AM, Clokie MRJ. What does the talking?: Quorum sensing signalling genes discovered in a bacteriophage genome. Kaufmann GF, editor. PLoS One. 2014;9(1):e85131.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, et al. Communication between viruses guides lysis–lysogeny decisions. Nature. 2017;541(7638):488–93.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22(10):1879–903.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Mayer O, Jain P, Weisbrod TR, Biro D, Ho L, Jacobs-Sera D, et al. Fluorescent reporter DS6A mycobacteriophages reveal unique variations in infectibility and phage production in mycobacteria. O’Toole GA, editor. J Bacteriol. 2016;198(23):3220–32.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhang D, Coronel-Aguilera CP, Romero PL, Perry L, Minocha U, Rosenfield C, et al. The use of a novel NanoLuc-based reporter phage for the detection of Escherichia coli O157:H7. Sci Rep. 2016;6(1):33235.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Adhya S, Merril CR, Biswas B. Therapeutic and prophylactic applications of bacteriophage components in modern medicine. Cold Spring Harb Perspect Med. 2014;4(1):a012518.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Melo LDR, Veiga P, Cerca N, Kropinski AM, Almeida C, Azeredo J, et al. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front Microbiol. 2016;7:1024.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nzakizwanayo J, Hanin A, Alves DR, McCutcheon B, Dedi C, Salvage J, et al. Bacteriophage can prevent encrustation and blockage of urinary catheters by Proteus mirabilis. Antimicrob Agents Chemother. 2016;60(3):1530–6.PubMedCentralCrossRefGoogle Scholar
  108. 108.
    Lehman SM, Donlan RM. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother. 2015;59(2):1127–37.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lungren MP, Donlan RM, Kankotia R, Paxton BE, Falk I, Christensen D, et al. Bacteriophage K antimicrobial-lock technique for treatment of Staphylococcus aureus central venous catheter-related infection: a leporine model efficacy analysis. J Vasc Interv Radiol. 2014;25(10):1627–32.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M. Bacteriophage therapy in implant-related infections an experimental study. J Bone Joint Surg. 2013;95:117–25.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Kaur S, Harjai K, Chhibber S. In Vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One. 2016;11(6):e0157626.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Międzybrodzki R, Fortuna W, Weber-Dąbrowska B, Górski A. A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses. Clin Exp Med. 2009;9(4):303–12.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Ross A, Ward S, Hyman P. More is better: selecting for broad host range bacteriophages. Front Microbiol. 2016;7:1352.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Mapes AC, Trautner BW, Liao KS, Ramig RF. Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa. Bacteriophage. 2016;6(1):e1096995.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Yu P, Mathieu J, Li M, Dai Z, Alvarez PJJ. Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Dozois CM, editor. Appl Environ Microbiol. 2016;82(3):808–15.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage. 2011;1(2):66–85.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Goodridge LD. Designing phage therapeutics. Curr Pharm Biotechnol. 2010;11(1):15–27.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci. 2017;249:100–33.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Navarro F, Muniesa M. Phages in the human body. Front Microbiol. 2017;8:566.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, Drab M, Jończyk-Matysiak E, Lecion D, et al. Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Sci Rep. 2015;5:14802.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Verbeken G, Huys I, Pirnay J-P, Jennes S, Chanishvili N, Scheres J, et al. Taking bacteriophage therapy seriously: a moral argument. Biomed Res Int. 2014;2014:621316.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Brussow H. What is needed for phage therapy to become a reality in Western medicine? Virology. 2012;434(2):138–42.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shilpa Deshpande Kaistha
    • 1
  • Pramila Devi Umrao
    • 1
  • Ravish Katiyar
    • 2
  • Neelima Deshpande
    • 3
  1. 1.Department of MicrobiologyInstitute of Biosciences & Biotechnology, Chhatrapati Shahu Ji Maharaj UniversityKanpurIndia
  2. 2.Department of MicrobiologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia
  3. 3.Healthpoint PolyclinicPuneIndia

Personalised recommendations