Advertisement

Bacteriophages: A New (Yet Old) Weapon Against Infections

  • Stephen K. Mathew
  • Reba Kanungo
Chapter

Abstract

Healthcare-associated infections (HAIs) are among the top five leading causes of morbidity and mortality in industrialized countries. Bacteria are extremely adept at developing mechanisms to survive hostile environments. Bacteriophages are essentially viruses; as obligate parasites, they infect, replicate within and finally lyse the bacterium. Bacteriophages attach to receptors on the bacterial surface via tail fibres or base plate spikes, following which they inject their genome into the cell. Bacteriophages are a potent, natural antibacterial capable of inducing rapid bacterial cell lysis. The author discusses the history of bacteriophages and describes what bacteriophages are, concerns with bacteriophage therapy and its usage in humans and non-humans. While using bacteriophages therapeutically appears promising, care must be taken to ensure that resistance does not develop.

Keywords

Bacteriophages Phage therapy Antibacterial agents Drug resistance Bacterial infections Soft tissue infections Wound infections 

References

  1. 1.
    Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara G, Gould I, Goossens H, Greko C, So A, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta A, Qamar F, Mir F, Kariuki S, Bhutta Z, Coates A, Bergstrom R, Wright G, Brown E, Cars O. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98.PubMedCrossRefGoogle Scholar
  2. 2.
    WHO. Antimicrobial resistance: a global threat. Essent Drugs Monit. 2000;(28–29):1.Google Scholar
  3. 3.
    Guggenbichler J, Assadian O, Boeswald M, Kramer A. Incidence and clinical implication of nosocomial infections associated with implantable biomaterials – catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg Interdiszip. 2011;6(1):Doc18.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Shields R, Clancy C, Gillis L, Kwak E, Silveira F, Massih R, Eschenauer G, Potoski B, Nguyen M, Conly J. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS One. 2012;7(12):e52349.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Golkar Z, Bagasra O, Pace D. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 2014;8(2):129–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Murphy P, Evans G. Advances in wound healing: a review of current wound healing products. Plast Surg Int. 2012;2012:190436.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Nilsson A. Phage therapy - constraints and possibilities. J Med Sci. 2014;119(2):192–8.Google Scholar
  8. 8.
    Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Górski A. Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Postepy Hig Med Dosw. 2007;61:461–5.Google Scholar
  9. 9.
    Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett J, Edwards J. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(2):155–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Boucher HW, Talbot GH, Benjamin DK, Bradley J, Guidos RJ, Jones RN, Murray B, Bonomo R, Gilbert D. 10 × ‘20 Progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(12):1685–94.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Infectious Diseases Society of America. The 10 × ‘20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis. 2010;50(8):1081–3.CrossRefGoogle Scholar
  12. 12.
    Cabot G, Bruchmann S, Mulet X, Zamorano L, Moya B, Juan C, Haussler S, Oliver A. Pseudomonas aeruginosaceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58(6):3091–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Park B, Kwon J, Kang S, Hong S. Analysis of malpractice claims associated with surgical site infection in the field of plastic surgery. J Korean Med Sci. 2016;31:1963–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn B. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control. 2009;37(5):387–97.PubMedCrossRefGoogle Scholar
  15. 15.
    Magill SS, Hellinger W, Cohen J, Kay R, Bailey C, Boland B, Carey D, Guzman J, Dominguez K, Edwards J, Goraczewski L, Horan T, Miller M, Phelps M, Saltford R, Seibert J, Smith B, Starling P, Viergutz B, Walsh K, Rathore M, Guzman N, Fridkin S. Prevalence of healthcare-associated infections in acute care hospitals in Jacksonville. Florida Infect Control Hosp Epidemiol. 2012;33(03):283–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Awad S. Adherence to surgical care improvement project measures and post-operative surgical site infections. Surg Infect (Larchmt). 2012;13(4):234–7.CrossRefGoogle Scholar
  17. 17.
    Berríos-Torres S, Umscheid C, Bratzler D, Leas B, Stone E, Kelz R, Reinke C, Morgan S, Solomkin J, Mazuski J, Dellinger P, Itani K, Berbari E, Segreti J, Parvizi J, Blanchard J, Allen G, Kluytmans J, Donlan R, Schecter W. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017;152(8):784–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Gupta V, Winocour J, Shi H, Shack R, Grotting J, Higdon K. Preoperative risk factors and complication rates in facelift: analysis of 11,300 patients. Aesthet Surg J. 2016;36(1):1–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Toia F, D’Arpa S, Massenti M, Amodio E, Pirrello R, Moschella F. Perioperative antibiotic prophylaxis in plastic surgery: a prospective study of 1100 adult patients. J Plast Reconstr Aesthet Surg. 2012;65:601–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Harper D, Enright M. Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol 2011;111:1–7, 1.PubMedCrossRefGoogle Scholar
  21. 21.
    Wittebole X, De Roock S, Opal S. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014;5(1):226–35.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rhoads D, Wolcott R, Kuskowski M, Wolcott B, Ward L, Sulakvelidze A. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care. 2009;18(6):237–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Wright A, Hawkins C, Anggård E, Harper D. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34:349–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Stulerg J, Delaney C, Neuhauser D, Aron D, Fu P, Koroukian S. Adherence to surgical care improvement project measures and the association with postoperative infections. JAMA. 2010;303(24):2479–85.CrossRefGoogle Scholar
  25. 25.
    Stevens D, Bisno A, Chambers H, Dellinger E, Goldstein E, Gorbach S, Hirschmann J, Kaplan S, Montoya J, Wade J. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(2):e10–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Leaper D, Tanner J, Kiernan M, Assadian O, Edmiston C Jr. Surgical site infection: poor compliance with guidelines and care bundles. Int Wound J. 2015;12(3):357–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Nazarian Mobin S, Keyes G, Singer R, Yates J, Thompson D. Infections in outpatient surgery. Clin Plast Surg. 2013;40:439–46.PubMedCrossRefGoogle Scholar
  28. 28.
    Jones D, Bunn F, Bell-Syer S. Prophylactic antibiotics to prevent surgical site infection after breast cancer surgery. Cochrane Database Syst Rev. 2014;3:CD005360.Google Scholar
  29. 29.
    Burrowes B, Harper D, Anderson J, McConville M, Enright M. Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev Anti Infect Ther. 2011;9(9):775–85.PubMedCrossRefGoogle Scholar
  30. 30.
    McVay C, Velasquez M, Fralick J. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother. 2007;51(6):1934–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lyle W, Outlaw K, Krizek T, Koss N, Payne W, Robson M. Prophylactic antibiotics in plastic surgery: trends of use over 25 years of an evolving specialty. Aesthet Surg J. 2003;23(3):177–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Yoo D, Peng G, Azizzadeh B, Nassif P. Microbiology and antibiotic prophylaxis in rhinoplasty: a review of 363 consecutive cases. JAMA Facial Plast Surg. 2015;17(1):23–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Hsu P, Bullocks J, Matthews M. Infection prophylaxis update. Semin Plast Surg. 2006;20(4):241–8.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Sulakvelidze A, Alavidze Z, Morris J Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–59.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bruynoghe R, Maisin J. Essais de therapeutique au moyen du. C R Soc Biol. 1921;85:1.Google Scholar
  36. 36.
    Summers W. In: Summers WC, editor. Felix d’Herelle and the origins of molecular biology. Hyderabad: Universities Press; 2000. p. 125–44.Google Scholar
  37. 37.
    Abedon S, Kuhl S, Blasdel B, Kutter E. Phage treatment of human infections. Bacteriophage. 2011;1:66–85.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fruciano D, Bourne S. Phage as an antimicrobial agent: d’Herelle’s heretical theories and their role in the decline of phage prophylaxis in the west. Can J Infect Dis Med Microbiol. 2007;18(1):19–26.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother. 2005;11:211–9.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Deresinski S. Bacteriophage therapy: exploiting smaller fleas. Clin Infect Dis. 2009;48:1096–101.PubMedCrossRefGoogle Scholar
  41. 41.
    Rakhuba D, Kolomiets E, Dey E, Novik G. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol. 2010;59(3):145–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Holmes R. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis. 2000;181(Suppl 1):S156–67.PubMedCrossRefGoogle Scholar
  43. 43.
    Drilling A, Ooi M, Miljkovic D, James C, Speck P, Vreugde S, Clark J, Wormald P. Long-term safety of topical bacteriophage application to the frontal sinus region. Front Cell Infect Microbiol. 2017;7:49.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sarker S, McCallin S, Barretto C, Berger B, Pittet A, Sultana S, Krause L, Huq S, Bibiloni R, Bruttin A, Reuteler G, Brussow H. Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology. 2012;434:222–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Sarker S, Sultana S, Reuteler G, Moine D, Descombes P, Charton F, Bourdin G, McCallin S, Ngom-Bru C, Neville T, Akter M, Huq S, Qadri F, Talukdar K, Kassam M, Delley M, Loiseau C, Deng Y, Aidy S, Berger B, Brussow H. Oral phage therapy of acute bacterial diarrohea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine. 2016;4:124–37.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Verbeken G, Pirnay J, Lavigne R, Jennes S, De Vos D, Casteels M, Huys I. Calls for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Exp (Warsz). 2014;62:117–29.CrossRefGoogle Scholar
  47. 47.
    Payne R, Jansen V. Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther. 2000;68(3):225–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Smith H, Huggins M. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol. 1982;128:307–18.PubMedGoogle Scholar
  49. 49.
    Smith H, Huggins M, Shaw K. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol. 1987;133:1111–26.PubMedGoogle Scholar
  50. 50.
    Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman M, Wakiguchi H, Sugihara S, Sugiura T, Koda S, Muraoka A, Imai S. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage ϕMR11. J Infect Dis. 2003;187(4):613–24.PubMedCrossRefGoogle Scholar
  51. 51.
    Cerveny K, DePaola A, Duckworth D, Gulig P. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect Immun. 2002;70(11):6251–62.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Guang-Han O, Leang-Chung C, Vellasamy K, Mariappan V, Li-Yen C, Vadivelu J. Experimental phage therapy for Burkholderiapseudomallei infection. PLoS One. 2016;11(7):e0158213.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Filippov A, Sergueev K, He Y, Huang X, Gnade B, Mueller A, Fernandez-Prada C, Nikolich M. Bacteriophage therapy of experimental bubonic plague in mice. Adv Exp Med Biol. 2012;954:337–48.PubMedCrossRefGoogle Scholar
  54. 54.
    Ryan E, Gorman S, Donnelly R, Gilmore B. Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol. 2011;63:1253–64.PubMedCrossRefGoogle Scholar
  55. 55.
    Carmody L, Gill J, Summer E, Sajjan U, Gonzalez C, Young R, LiPuma J. Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. J Infect Dis. 2010;201(2):264–71.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Curtin J, Donlan R. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother. 2006;50(4):1268–75.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Biswas B, Adhya S, Washart P, Paul B, Trostel A, Powell B, Carlton R, Merril C. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun. 2002;70(1):204–10.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Payne R, Jansen V. Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet. 2003;42(4):315–25.PubMedCrossRefGoogle Scholar
  59. 59.
    Lu T, Koeris M. The next generation of bacteriophage therapy. Curr Opin Microbiol. 2011;14:1–8.CrossRefGoogle Scholar
  60. 60.
    Brussow H. What is needed for phage therapy to become a reality in Western medicine? Virology. 2012;434:138–42.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Abedon ST, LeJeune JT. Why bacteriophage encode exotoxins and other virulence factors. Evol Bioinform Online. 2005;1:97–110.CrossRefGoogle Scholar
  62. 62.
    Hagens S, Habel A, von Ahsen U, von Gabain A, Blasi U. Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother. 2004;48(10):3817–22.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Slopek S, Durlakova I, Weber-Dabrowska B, Kucharewicz-Krukowska A, Dabrowski M, Bisikiewicz R. Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch Immunol Ther Exp (Warsz). 1983;31:267–91.Google Scholar
  64. 64.
    Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashki N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One. 2009;4(3):e4944.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sullivan K, Turner N, Roundtree S, McGowan K. Rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) using the KeyPath MRSA/MSSA blood culture test and the BacT/ALERT system in a pediatric population. Arch Pathol Lab Med. 2013;137(8):1103–5.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon S. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol. 2010;11:69–86.PubMedCrossRefGoogle Scholar
  67. 67.
    Gill J, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11:2–14.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Solomon S, de Farias M, Pimpao C. Use of Staphylococcus aureus phage lysate Staphage lysate (SPL) for the control of recurrent pyoderma eczema in dogs with atopic dermatitis. Acta Sci Vet. 2016;44:1382.Google Scholar
  69. 69.
    d’Herelle F. Bacteriophage as a treatment in acute medical and surgical infections. Bull N Y Acad Med. 1931;7:329–48.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Babalova E, Katsitadze K, Sakvarelidze L, Imnaishvili N, Sharashidze T, Badashvili V, Kiknadze G, Meipariani A, Gendzekhadze N, Machavariani E, Gogoberidze K, Gozalov E, Dekanosidze N. Preventive value of dried dysentery bacteriophage. Microbiol Epidemiol Immunobiol. 1968;2:143–5.Google Scholar
  71. 71.
    Parracho H, Burrowes B, Enright M, McConville M, Harper D. The role of regulated clinical trials in the development of bacteriophage therapeutics. J Mol Genet Med. 2012;6:279–86.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Markoishvili K, Tsitlanadze G, Katsarava R, Morris J Jr, Sulakvelidze A. A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol. 2002;41(7):453–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Marinelli L, Fitz-Gibbon S, Hayes C, Bowman C, Inkeles M, Loncaric A, Russell D, Jacobs-Sera D, Cokus S, Pellegrini M, Kim J, Miller J, Hatfull G, Modin R. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates. mBio. 2012;3(5):e00279–12.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Brown T, Petrovski S, Dyson Z, Seviour R, Tucci J. The formulation of bacteriophage in a semi solid preparation for control of Propionibacterium acnes growth. McDowell A, editor. PLoS One. 2016;11(3):e0151184.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    ClinicalTrials.gov. Evaluation of phage therapy for the treatment of Escherichia coli and Pseudomonas aeruginosa wound infections in burned patients (PHAGOBURN). 2014. https://clinicaltrials.gov/ct2/show/NCT02116010. Accessed 7 July 2017.
  76. 76.
    ClinicalTrials.gov. Evaluation and detection of facial propionibacterium acnes bacteria and phage. 2016. https://clinicaltrials.gov/ct2/show/NCT03009903. Accessed 7 July 2017.
  77. 77.
    ClinicalTrials.gov. Standard treatment associated with phage therapy versus placebo for diabetic foot ulcers infected by S. aureus (PhagoPied). 2016. https://clinicaltrials.gov/ct2/show/NCT02664740. Accessed 7 July 2017.
  78. 78.
    Chen L, Liu Y, Hu A, Chang K, Lin N, Lai M, Tseng C. Potential of bacteriophage ΦAB2 as an environmental biocontrol agent for the control of multidrug-resistant Acinetobacter baumannii. BMC Microbiol. 2013;13(1):154.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephen K. Mathew
    • 1
    • 2
  • Reba Kanungo
    • 2
  1. 1.Department of MicrobiologyBelievers Church Medical CollegeThiruvallaIndia
  2. 2.Department of MicrobiologyPondicherry Institute of Medical SciencesKalapetIndia

Personalised recommendations