Advertisement

Stem Cell Differentiation Directed by Material and Mechanical Cues

  • Caitlyn A. Moore
  • Alexandra Condé-Green
  • Pranela Rameshwar
  • Mark S. GranickEmail author
Chapter

Abstract

Stem cells play a crucial role in regenerative processes. They are heavily influenced by their microenvironment and, depending on the external signal, stem cells self-renew and differentiate toward specific lineages. It is critical to understand the diverse mechanical and material cues that induce stem cell behavior to harness these changes for tissue engineering applications. As such, significant advances have been made in regenerative approaches to breast reconstruction. In this review, we will discuss the role of extracellular signals in guiding stem cell differentiation and stress the role of material and mechanical cues that influence mammary adipose and epithelial tissues in the context of breast reconstruction.

Keywords

Adipose stem cells Regenerative Tissue engineering Differentiation Materials 

References

  1. 1.
    Visscher LE, Cheng M, Chhaya M, Hintz ML, Schantz JT, Tran P, Ung O, Wong C, Hutmacher DW. Breast augmentation and reconstruction from a regenerative medicine point of view: state of the art and future perspectives. Tissue Eng Part B Rev. 2017;23(3):281–93.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Vidi PA, Bissell MJ, Lelievre SA. Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol. 2013;945:193–219.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010;43(1):55–62.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sun Y, Chen CS, Fu J. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys. 2012;41:519–42.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ibrahim AMS, Koolen PGL, Ashraf AA, Kim K, Mureau MAM, Lee BT, Lin SJ. Acellular dermal matrix in reconstructive breast surgery. Plast Reconstr Surg Glob Open. 2015;3(4):e381.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Xu Y, Zhang G, Chang Y, Oiu YX, Wang C. The preparation of acellular dermal matrices by freeze-thawing and ultrasonication process and the evaluation of its antigenicity. Cell Biochem Biophys. 2015;73(1):2733.CrossRefGoogle Scholar
  8. 8.
    Eckhard U, Huesgen PF, Brandstetter H, Overall CM. Proteomic protease specificity profiling of clostridial collagenases reveal their intrinsic nature as dedicated degraders of collagen. J Proteomics. 2014;100:102–14.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nilsen TJ, Dasgupta A, Huang YC, Wilson H, Chnari E. Do processing methods make a difference in acellular dermal matrix properties? Aesthet Surg J. 2016;36(Suppl 2):S7–S22.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ho G, Nguyen TJ, Shahabi A, Hwang BH, Chan LS, Wong AK. A systematic review and meta-analysis of complications associated with acellular dermal matrix-assisted breast reconstruction. Ann Plast Surg. 2012;68(4):346–56.PubMedCrossRefGoogle Scholar
  11. 11.
    Nahabedian MY. Acellular dermal matrices in primary breast reconstruction: principles, concepts, and indications. Plast Reconstr Surg. 2012;130(5 Suppl 2):44S–53S.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    McCarthy CM, Lee CN, Halvorson EG, Riedel E, Pusic AL, Mehrara BJ, Disa JJ. The use of acellular dermal matrices in two-stage expander/implant reconstruction: a multicenter, blinded, randomized controlled trial. Plast Reconstr Surg. 2012;130(5 Suppl 2):57S–66S.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47(4):1394–400.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ramiao NG, Martins PS, Rynkevic R, Fernandes AA, Barroso M, Santos DC. Biomechanical properties of breast tissue, a state-of-the-art review. Biomech Model Mechanobiol. 2016;15(5):1307–23.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Zamir EA, Srinivasan V, Perucchio R, Taber LA. Mechanical asymmetry in the embryonic chick heart during looping. Ann Biomed Eng. 2003;31(11):1327–36.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Krieg M, Arboleda-Estudillo Y, Puech PH, Kafer J, Graner F, Muller DJ, Heisenberg CP. Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol. 2008;10(4):429–36.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rozario T, Dzamba B, Weber GF, Davidson LA, DeSimone DW. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev Biol. 2009;327(2):386–98.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Schedin P, Keely PJ. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol. 2011;3(1):a003228.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage. Dev Cell. 2004;6(4):483–95.PubMedCrossRefGoogle Scholar
  21. 21.
    Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hebner C, Weaver VM, Debnath J. Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures. Annu Rev Pathol. 2008;3:313–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Wozniak MA, Desai R, Solski PA, Der CJ, Keely PJ. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol. 2003;163(3):583–95.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chandler EM, Seo BR, Califano JP, Andresen Eguiluz RC, Lee JS, Yoon CJ, Tims DT, Wang JX, Cheng L, Mohanan S, Buckley MR, Cohen I, Nikitin AY, Williams RM, Gourdon D, Reinhart-King CA, Fischbach C. Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proc Natl Acad Sci U S A. 2012;109(25):9786–91.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54.CrossRefGoogle Scholar
  26. 26.
    Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–22.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121(22):3794–802.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ishihara S, Inman DR, Li WJ, Ponik SM, Keely P. Mechano-signal transduction in mesenchymal stem cells induces prosaposin secretion to drive the proliferation of breast cancer cells. Cancer Res. 2017;77(22):6179–89.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sonam S, Sathe SR, Yim EK, Sheetz MP, Lim CT. Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate. Sci Rep. 2016;6:20415.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kshitiz, Park J, Kim P, Helen W, Engler AJ, Levchenko A, Kim DH. Control of stem cell fate and function by engineering physical microenvironments. Integr Biol (Camb). 2012;4(9):1008–18.CrossRefGoogle Scholar
  31. 31.
    Xu R, Boudreau A, Bissell MJ. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 2009;28(1–2):167–76.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhu J, Xiong G, Trinkle C, Xu R. Integrated extracellular matrix signaling in mammary gland development and breast cancer progression. Histol Histopathol. 2014;29(9):1083–92.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Song W, Lu H, Kawazoe N, Chen G. Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns. Langmuir. 2011;27(10):6155–62.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(11):4872–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Burridge K. Focal adhesions: a personal perspective on a half century of progress. FEBS J. 2017;284(20):3355–61.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Schwartz MA. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol. 2010;2(12):a005066.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 2007;177(1):87–101.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Warburton MJ, Mitchell D, Ormerod EJ, Rudland P. Distribution of myoepithelial cells and basement membrane proteins in the resting pregnant lactating, and involution rat mammary gland. J Histochem Cytochem. 1982;30(7):667–76.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Woodward TL, Mienaltowski AS, Modi RR, Bennett JM, Haslam SZ. Fibronectin and the a5b1 integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinologie. 2001;142(7):3214–22.CrossRefGoogle Scholar
  40. 40.
    Haslam SZ, Woodward TL. Reciprocal regulation of extracellular matrix proteins and ovarian steroid activity in the mammary gland. Breast Cancer Res. 2001;3(6):365–72.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Guarnieri D, Battista S, Borzacchiello A, Mayol L, De Rosa E, Keene DR, Muscariello L, Barbarisi A, Netti PA. Effects of fibronectin and laminin on structural, mechanical and transport properties of 3D collageneous network. J Mater Sci Mater Med. 2007;18(2):245–53.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Fogerty FJ, Akiyama SK, Yamada KM, Mosher DF. Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (a5b1) antibodies. J Cell Biol. 1990;111(2):699–708.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24(6):389–99.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Liao HT, Marra KG, Rubin JP. Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Eng Part B Rev. 2014;20(4):267–76.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5):1409–22.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mashiko T, Yoshimura K. How does fat survive and remodel after grafting? Clin Plast Surg. 2015;42(2):181–90.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Mineda K, Kuno S, Kato H, Kinoshita K, Doi K, Hashimoto I, Nakanishi H, Yoshimura K. Chronic inflammation and progressive calcification as a result of fat necrosis: the worst outcome in fat grafting. Plast Reconstr Surg. 2014;133(5):1064–72.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hsueh YS, Chen YS, Tai HC, Ondrej M, Chao SC, Chen YY, Shih Y, Lin JF, Shieh MJ, Lin FH. Laminin-alginate beads as preadipocyte carriers to enhanve adipogenesis in vitro and in vivo. Tissue Eng Part A. 2016;23(5–6):185–94.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Banyard DA, Bourgeois JM, Widgerow AD, Evans GR. Regenerative biomaterials: a review. Plast Reconstr Surg. 2015;135(6):1740–8.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Combellack EJ, Jessop ZM, Naderi N, Griffin M, Dobbs T, Ibrahim A, Evans S, Burnell S, Doak SH, Whitaker IS. Adipose regeneration and implications for breast reconstruction: update and the future. Gland Surg. 2016;5(2):227–41.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Van Nieuwenhove I, Tytgat L, Ryx M, Blondeel P, Stillaert F, Thienpont H, Ottevaere H, Dubruel P, Van Vlierberghe S. Soft tissue fillers for adipose tissue regeneration: from hydrogel development toward clinical applications. Acta Biomater. 2017;63:37–49.PubMedCrossRefGoogle Scholar
  52. 52.
    Puskas JE, Luebbers MT. Breast implants: the good, the bad and the ugly. Can nanotechnology improve implants? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):153–68.PubMedCrossRefGoogle Scholar
  53. 53.
    Campbell JJ, Watson CJ. Three-dimensional culture models of mammary gland. Organogenesis. 2009;5(2):43–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hillreiner M, Muller NI, Koch HM, Schmautz C, Kuster B, Pfaffl MW, Kliem H. Establishment of a 3D cell culture model of primary bovine mammary epithelial cells extracted from fresh milk. In Vitro Cell Dev Biol Anim. 2017;53(8):706–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Hilmarsdottir B, Briem E, Halldorsson S, Kricker J, Ingthorsson S, Gustafsdottir S, Mælandsmo GM, Magnusson MK, Gudjonsson T. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells. Cell Death Dis. 2017;8(5):e2769.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ingthorsson S, Briem E, Bergthorsson JT, Gudjonsson T. Epithelial plasticity during human breast morphogenesis and cancer progression. J Mammary Gland Biol Neoplasia. 2016;21(3–4):139–48.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Speroni L, Sweeney MF, Sonnenschein C, Soto AM. A hormone-responsive 3D culture model of the human mammary gland epithelium. J Vis Exp. 2016;108:e53098.Google Scholar
  58. 58.
    Sokol ES, Miller DH, Breggia A, Spencer KC, Arendt LM, Gupta PB. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res. 2016;18(1):19.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Thomas DJ. 3D bioprinting as a solution for engineering the nipple areola complex for breast cancer reconstruction. Int J Surg. 2017;41:14–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Caitlyn A. Moore
    • 1
  • Alexandra Condé-Green
    • 1
  • Pranela Rameshwar
    • 1
  • Mark S. Granick
    • 1
    Email author
  1. 1.Division of Plastic Surgery, Department of General SurgeryRutgers New Jersey Medical SchoolNewarkUSA

Personalised recommendations