Advertisement

Mechanotransduction in Wound Healing and Scar Formation

  • Dominik Duscher
Chapter

Abstract

Scarring is the typical response to tissue injuries and the process of fibrotic repair provides early restoration of tissue integrity rather than functional regeneration.

Effective clinical therapies for scar mitigation are only beginning to be developed.

The author discusses molecular biomechanics of scar formation, extracellular mechanotransduction (mechanisms by which mechanical forces are converted to biochemical stimuli), intracellular mechanotransduction, and modulation of cutaneous biomechanics to reduce scarring. A profound understanding of the biomechanical principles influencing scarring and fibrosis is imperative to combat this significant pathology that represents a substantial healthcare burden worldwide.

Keywords

Mechanotransduction Fibrosis Scarring Wound healing Focal adhesion kinase 

References

  1. 1.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ting SB, Caddy J, Hislop N, Wilanowski T, Auden A, Zhao LL, Ellis S, Kaur P, Uchida Y, Holleran WM, Elias PM, Cunningham JM, Jane SM. A homolog of drosophila grainy head is essential for epidermal integrity in mice. Science. 2005;308(5720):411–3.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Langer K. Zur Anatomie und Physiologie der Haut. Über die Spaltbarkeit der Cutis. Sitzungsbericht der Mathematisch-naturwissenschaftlichen Classe der Wiener Kaiserlichen Academie der Wissenschaften. 1861;44:19.Google Scholar
  4. 4.
    Wong VW, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med. 2012;18(1):148–52.CrossRefGoogle Scholar
  5. 5.
    Agha R, Ogawa R, Pietramaggiori G, Orgill DP. A review of the role of mechanical forces in cutaneous wound healing. J Surg Res. 2011;171(2):700–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Carver W, Goldsmith EC. Regulation of tissue fibrosis by the biomechanical environment. Biomed Res Int. 2013;2013:101979.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE. 2002;2002(119):pe6.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10(1):75–82.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ingber DE. The architecture of life. Sci Am. 1998;278(1):48–57.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fuller RB. Tensegrity. Portfolio Art News Annu 1961;4:112–127, 144, 148. tensegritywiki.com/Tensegrity%2C+Portfolio+and+Art+News+Annual+1961. Accessed 16 Feb 2018.
  11. 11.
    Huxley-Jones J, Pinney JW, Archer J, Robertson DL, Boot-Handford RP. Back to basics—how the evolution of the extracellular matrix underpinned vertebrate evolution. Int J Exp Pathol. 2009;90(2):95–100.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Oschman JL. Charge transfer in the living matrix. J Bodyw Mov Ther. 2009;13(3):215–28.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Gieni RS, Hendzel MJ. Mechanotransduction from the ECM to the genome: are the pieces now in place? J Cell Biochem. 2008;104(6):1964–87.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Huang S, Ingber DE. Cell tension, matrix mechanics, and cancer development. Cancer Cell. 2005;8(3):175–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ingber DE. Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol. 2008;97(2–3):163–79.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kenny PA, Bissell MJ. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer. 2003;107(5):688–95.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Solon J, Levental I, Sengupta K, Georges PC, Janmey PA. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J. 2007;93(12):4453–61.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Brown AC, Fiore VF, Sulchek TA, Barker TH. Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis- associated epithelial-to-mesenchymal transitions. J Pathol. 2013;229(1):25–35.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Huang X, Yang N, Fiore VF, Barker TH, Sun Y, Morris SW, Ding Q, Thannickal VJ, Zhou Y. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol. 2012;47(3):340–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hinz B. Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep. 2009;11(2):120–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hadjipanayi E, Mudera V, Brown RA. Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness. J Tissue Eng Regen Med. 2009;3(2):77–84.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Baneyx G, Baugh L, Vogel V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci U S A. 2002;99(8):5139–43.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63–73.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wong VW, Longaker MT, Gurtner GC. Soft tissue mechanotransduction in wound healing and fibrosis. Semin Cell Dev Biol. 2012;23(9):981–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Goto M, Ikeyama K, Tsutsumi M, Denda S, Denda M. Calcium ion propagation in cultured keratinocytes and other cells in skin in response to hydraulic pressure stimulation. J Cell Physiol. 2010;224(1):229–33.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Martinac B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim Biophys Acta. 2014;1838(2):682–91.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Huang C, Akaishi S, Ogawa R. Mechanosignaling pathways in cutaneous scarring. Arch Dermatol Res. 2012;304(8):589–97.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Rees PA, Greaves NS, Baguneid M, Bayat A. Chemokines in wound healing and as potential therapeutic targets for reducing cutaneous scarring. Adv Wound Care. 2015;4(11):687–703.CrossRefGoogle Scholar
  30. 30.
    Margadant C, Sonnenberg A. Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep. 2010;11(2):97–105.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Buscemi L, Ramonet D, Klingberg F, Formey A, Smith-Clerc J, Meister JJ, Hinz B. The single-molecule mechanics of the latent TGF-beta1 complex. Curr Biol. 2011;21(24):2046–54.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, Springer TA. Latent TGF-beta structure and activation. Nature. 2011;474(7351):343–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18(7):816–27.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013;19(8):1047–53.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zhou SB, Wang J, Chiang CA, Sheng LL, Li QF. Mechanical stretch upregulates SDF-1alpha in skin tissue and induces migration of circulating bone marrow-derived stem cells into the expanded skin. Stem Cells. 2013;31(12):2703–13.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ding J, Hori K, Zhang R, Marcoux Y, Honardoust D, Shankowsky HA, Tredget EE. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 in the formation of postburn hypertrophic scar (HTS). Wound Repair Regen. 2011;19(5):568–78.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Henderson PW, Singh SP, Krijgh DD, Yamamoto M, Rafii DC, Sung JJ, Rafii S, Rabbany SY, Spector JA. Stromal-derived factor-1 delivered via hydrogel drug-delivery vehicle accelerates wound healing in vivo. Wound Repair Regen. 2011;19(3):420–5.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Rabbany SY, Pastore J, Yamamoto M, Miller T, Rafii S, Aras R, Penn M. Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant. 2010;19(4):399–408.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Maan ZN, Januszyk M, Rennert RC, Duscher D, Rodrigues M, Fujiwara T, Ho N, Whitmore A, Hu MS, Longaker MT, Gurtner GC. Noncontact, low-frequency ultrasound therapy enhances neovascularization and wound healing in diabetic mice. Plast Reconstr Surg. 2014;134(3):402e–11e.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Schwarz US, Gardel ML. United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J Cell Sci. 2012;125(Pt 13):3051–60.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wehrle-Haller B. Structure and function of focal adhesions. Curr Opin Cell Biol. 2012;24(1):116–24.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B. Functional atlas of the integrin adhesome. Nat Cell Biol. 2007;9(8):858–67.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wong VW, Garg RK, Sorkin M, Rustad KC, Akaishi S, Levi K, Nelson ER, Tran M, Rennert R, Liu W, Longaker MT, Dauskardt RH, Gurtner GC. Loss of keratinocyte focal adhesion kinase stimulates dermal proteolysis through upregulation of MMP9 in wound healing. Ann Surg. 2014;260(6):1138–46.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Wong VW, Akaishi S, Longaker MT, Gurtner GC. Pushing back: wound mechanotransduction in repair and regeneration. J Invest Dermatol. 2011;131(11):2186–96.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Januszyk M, Wong VW, Bhatt KA, Vial IN, Paterno J, Longaker MT, Gurtner GC. Mechanical offloading of incisional wounds is associated with transcriptional downregulation of inflammatory pathways in a large animal model. Organogenesis. 2014;10(2):186–93.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kook SH, Jang YS, Lee JC. Involvement of JNK-AP-1 and ERK-NF-kappaB signaling in tension-stimulated expression of type I collagen and MMP-1 in human periodontal ligament fibroblasts. J Appl Physiol (1985). 2011;111(6):1575–83.CrossRefGoogle Scholar
  47. 47.
    Hofmann M, Zaper J, Bernd A, Bereiter-Hahn J, Kaufmann R, Kippenberger S. Mechanical pressure-induced phosphorylation of p38 mitogen-activated protein kinase in epithelial cells via Src and protein kinase C. Biochem Biophys Res Commun. 2004;316(3):673–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Chiquet M, Tunc-Civelek V, Sarasa-Renedo A. Gene regulation by mechanotransduction in fibroblasts. Appl Physiol Nutr Metab. 2007;32(5):967–73.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Haudek SB, Gupta D, Dewald O, Schwartz RJ, Wei L, Trial J, Entman ML. Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovasc Res. 2009;83(3):511–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tremblay AM, Camargo FD. Hippo signaling in mammalian stem cells. Semin Cell Dev Biol. 2012;23(7):818–26.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Zhao B, Tumaneng K, Guan KL. The hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13(8):877–83.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hiemer SE, Varelas X. Stem cell regulation by the hippo pathway. Biochim Biophys Acta. 2013;1830(2):2323–34.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 2012;13(9):591–600.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–83.CrossRefGoogle Scholar
  55. 55.
    Lee MJ, Byun MR, Furutani-Seiki M, Hong JH, Jung HS. YAP and TAZ regulate skin wound healing. J Invest Dermatol. 2013;134(2):518–25.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL. The crumbs complex couples cell density sensing to hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell. 2010;19(6):831–44.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, Fu XD, Mills GB, Guan KL. Regulation of the hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2012;150(4):780–91.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Yamaguchi Y, Takihara T, Chambers RA, Veraldi KL, Larregina AT, Feghali-Bostwick CA. A peptide derived from endostatin ameliorates organ fibrosis. Sci Transl Med. 2012;4(136):136ra71.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Beyer C, Reichert H, Akan H, Mallano T, Schramm A, Dees C, Palumbo-Zerr K, Lin NY, Distler A, Gelse K, Varga J, Distler O, Schett G, Distler JH. Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann Rheum Dis. 2013;72(7):1255–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Diao JS, Xia WS, Yi CG, Yang Y, Zhang X, Xia W, Shu MG, Wang YM, Gui L, Guo SZ. Histone deacetylase inhibitor reduces hypertrophic scarring in a rabbit ear model. Plast Reconstr Surg. 2013;132(1):61e–9e.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tomcik M, Zerr P, Pitkowski J, Palumbo-Zerr K, Avouac J, Distler O, Becvar R, Senolt L, Schett G, Distler JH. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-beta signalling to prevent fibrosis. Ann Rheum Dis. 2013;73(6):1215–22.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Murata H, Zhou L, Ochoa S, Hasan A, Badiavas E, Falanga V. TGF-beta3 stimulates and regulates collagen synthesis through TGF-beta1-dependent and independent mechanisms. J Invest Dermatol. 1997;108(3):258–62.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Denton CP, Merkel PA, Furst DE, Khanna D, Emery P, Hsu VM, Silliman N, Streisand J, Powell J, Akesson A, Coppock J. Hoogen Fv, Herrick a, et al. recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007;56(1):323–33.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Prey S, Ezzedine K, Doussau A, Grandoulier AS, Barcat D, Chatelus E, Diot E, Durant C, Hachulla E, de Korwin-Krokowski JD, Kostrzewa E, Quemeneur T, et al. Imatinib mesylate in scleroderma-associated diffuse skin fibrosis: a phase II multicentre randomized double-blinded controlled trial. Br J Dermatol. 2012;167(5):1138–44.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Renovo Group PLC, Juvista EU Phase 3 trial results. 2011. https://www.fiercebiotech.com/biotech/juvista-eu-phase-3-trial-results. Accessed 16 Feb 2018.
  66. 66.
    Horn A, et al. Inhibition of hedgehog signalling prevents experimental fibrosis and induces regression of established fibrosis. Ann Rheum Dis. 2012;71(5):785–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    J. Kolb MR, Gauldie J. Idiopathic pulmonary fibrosis: the matrix is the message. Am J Respir Crit Care Med. 2011;184(6):627–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Barry-Hamilton V, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010;16(9):1009–17.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Olsen KC, et al. Transglutaminase 2 and its role in pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184(6):699–707.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Shi JH, et al. Protection against TGF-beta1-induced fibrosis effects of IL-10 on dermal fibroblasts and its potential therapeutics for the reduction of skin scarring. Arch Dermatol Res. 2013;305(4):341–52.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Occleston NL, et al. New therapeutics for the prevention and reduction of scarring. Drug Discov Today. 2008;13(21–22):973–81.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Nakagome K, et al. In vivo IL-10 gene delivery attenuates bleomycin induced pulmonary fibrosis by inhibiting the production and activation of TGF-beta in the lung. Thorax. 2006;61(10):886–94.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yamamoto T, Eckes B, Krieg T. Effect of interleukin-10 on the gene expression of type I collagen, fibronectin, and decorin in human skin fibroblasts: differential regulation by transforming growth factor-beta and monocyte chemoattractant protein-1. Biochem Biophys Res Commun. 2001;281(1):200–5.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Reitamo S, et al. Interleukin-10 modulates type I collagen and matrix metalloprotease gene expression in cultured human skin fibroblasts. J Clin Invest. 1994;94(6):2489–92.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Yuan W, Varga J. Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem. 2001;276(42):38502–10.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Rustad KC, Wong VW, Gurtner GC. The role of focal adhesion complexes in fibroblast mechanotransduction during scar formation. Differentiation. 2013;86(3):87–91.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Engrav LH, et al. 12-year within-wound study of the effectiveness of custom pressure garment therapy. Burns. 2010;36(7):975–83.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Li-Tsang CW, Zheng YP, Lau JC. A randomized clinical trial to study the effect of silicone gel dressing and pressure therapy on posttraumatic hypertrophic scars. J Burn Care Res. 2010;31(3):448–57.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Steinstraesser L, et al. Pressure garment therapy alone and in combination with silicone for the prevention of hypertrophic scarring: randomized controlled trial with intraindividual comparison. Plast Reconstr Surg. 2011;128(4):306e–13e.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ward RS. Pressure therapy for the control of hypertrophic scar formation after burn injury. A history and review. J Burn Care Rehabil. 1991;12(3):257–62.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Akaishi S, et al. The tensile reduction effects of silicone gel sheeting. Plast Reconstr Surg. 2010;126(2):109e–11e.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Atkinson JA, et al. A randomized, controlled trial to determine the efficacy of paper tape in preventing hypertrophic scar formation in surgical incisions that traverse Langer’s skin tension lines. Plast Reconstr Surg. 2005;116(6):1648–56.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Gurtner GC, et al. Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Ann Surg. 2011;254(2):217–25.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Lim AF, et al. The embrace device significantly decreases scarring following scar revision surgery in a randomized controlled trial. Plast Reconstr Surg. 2014;133(2):398–405.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Longaker MT, et al. A randomized controlled trial of the embrace advanced scar therapy device to reduce incisional scar formation. Plast Reconstr Surg. 2014;134(3):536–46.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Duscher D, et al. Mechanotransduction and fibrosis. J Biomech. 2014;47(9):1997–2005.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dominik Duscher
    • 1
  1. 1.Department for Plastic Surgery and Hand Surgery, Division of Experimental Plastic SurgeryTechnical University of MunichMunichGermany

Personalised recommendations