Anti-Biofilm Activity of Viruses, Bacteria, Fungi, and Lichens: Mechanisms and Impact on Clinical Practice

  • Oana SăndulescuEmail author
  • Anca Streinu-Cercel
  • Mihai Săndulescu
  • Adrian Streinu-Cercel


When adopting a sessile lifestyle, bacteria gain the adaptive ability to tolerate a wide range of antimicrobials, becoming increasingly resilient. In the clinic, there is an acute need to find new options for the treatment of biofilm-driven infections, and research on biofilm-active agents is well underway. In this chapter, we aim to characterize the existing body of knowledge on the topic of natural anti-biofilm compounds, by describing the main types of agents, their mechanisms and their potential clinical role and impact on medical practice. Bacteriophages are viruses that infect bacterial cells and either destroy the cells or circumvent their ability to form biofilms, through the action of specific enzymes. Bacteria can also synthetize specific molecules, bioactive peptides, or secondary metabolites that display anti-biofilm activity either through a lytic action or through inhibiting the formation of extracellular polymeric substances. Last but not least, anti-biofilm compounds have also been isolated from clinically relevant fungi or lichen-associated fungi, as some of their cell wall components or secondary metabolites may display important roles in limiting bacterial and fungal biofilms alike.


Anti-biofilm agent Phages Bioactive peptides Bacteriocins Biofilm inhibition Biofilm disruption 


  1. 1.
    Săndulescu O. Managing sticky situations—anti-biofilm agents. Germs. 2016;6(2):49.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Nunez-Nunez M, Navarro MD, Palomo V, Rajendran NB, Del Toro MD, Voss A, Sharland M, Sifakis F, Tacconelli E, Rodriguez-Bano J. The methodology of surveillance for antimicrobial resistance and healthcare-associated infections in Europe (SUSPIRE): a systematic review of publicly available information. Clin Microbiol Infect. 2018;24(2):105–9.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Săndulescu O, Streinu-Cercel A, Săndulescu M, Neguț A, Calistru P, Berciu I, Preoțescu L, Streinu-Cercel A. Quorum sensing and biofilm formation in Staphylococcus species. Therap Pharmacol Clin Toxicol. 2015;19(2):45–51.Google Scholar
  4. 4.
    Bleotu C, Chifiriuc M, Mircioaga D, Săndulescu O, Aldea I, Banu O, Ion D, Diaconu C, Lazar V. The influence of nutrient culture media on Escherichia coli adhesion and biofilm formation ability. Rom Biotechnol Lett. 2017;22(2):12483–91.Google Scholar
  5. 5.
    Săndulescu O. Global distribution of antimicrobial resistance in E. coli. J Contemp Clin Pract. 2016;2(2):69–74.CrossRefGoogle Scholar
  6. 6.
    Secor PR, Sweere JM, Michaels LA, Malkovskiy AV, Lazzareschi D, Katznelson E, Rajadas J, Birnbaum ME, Arrigoni A, Braun KR, Evanko SP, Stevens DA, Kaminsky W, Singh PK, Parks WC, Bollyky PL. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe. 2015;18(5):549–59.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Brzozowska E, Pyra A, Pawlik K, Janik M, Gorska S, Urbanska N, Drulis-Kawa Z, Gamian A. Hydrolytic activity determination of Tail Tubular Protein A of Klebsiella pneumoniae bacteriophages towards saccharide substrates. Sci Rep. 2017;7(1):18048.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Colavecchio A, Goodridge LD. Phage therapy approaches to reducing pathogen persistence and transmission in animal production environments: opportunities and challenges. Microbiol Spectr. 2017;5:3. Scholar
  9. 9.
    Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence. 2014;5(1):213–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Matsuda T, Freeman TA, Hilbert DW, Duff M, Fuortes M, Stapleton PP, Daly JM. Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery. 2005;137(6):639–46.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Dufour N, Delattre R, Ricard JD, Debarbieux L. The lysis of pathogenic Escherichia coli by bacteriophages releases less endotoxin yhan by beta-lactams. Clin Infect Dis. 2017;64(11):1582–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Neguț A, Streinu-Cercel A, Săndulescu O, Moţoi M, Berciu I, Popa M, Streinu-Cercel A. Bacteriophages – novel biotechnology tools available in clinical practice in Romania. Rom Biotechnol Lett. 2017;22(2):12492–5.Google Scholar
  13. 13.
    Negut AC, Chifiriuc MC, Sandulescu O, Streinu-Cercel A, Oprea M, Dragulescu EC, Gheorghe I, Berciu I, Coralia B, Popa M, Otelea D, Talapan D, Dorobat O, Codita I, Popa MI. Bacteriophage-driven inhibition of biofilm formation in Staphylococcus strains from patients attending a Romanian reference center for infectious diseases. FEMS Microbiol Lett. 2016;363:18. pii: fnw193PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Negut AC, Sandulescu O, Popa M, Streinu-Cercel A, Alavidze Z, Berciu I, Bleotu C, Popa MI, Chifiriuc MC. Experimental approach for bacteriophage susceptibility testing of planktonic and sessile bacterial populations—study protocol. Germs. 2014;4(4):92–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Săndulescu O, Bleotu C, Matei L, Streinu-Cercel A, Oprea M, Drăgulescu EC, Chifiriuc MC, Rafila A, Pirici D, Tălăpan D, Dorobăț OM, Neguț AC, Oțelea D, Berciu I, Ion DA, Codiță I, Calistru PI. Comparative evaluation of aggressiveness traits in staphylococcal strains from severe infections versus nasopharyngeal carriage. Microb Pathog. 2016;102:45–53.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141–51.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Yan J, Mao J, Xie J. Bacteriophage polysaccharide depolymerases and biomedical applications. Bio Drugs. 2014;28(3):265–74.Google Scholar
  18. 18.
    Mushtaq N, Redpath MB, Luzio JP, Taylor PW. Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype. Antimicrob Agents Chemother. 2004;48(5):1503–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zelmer A, Martin MJ, Gundogdu O, Birchenough G, Lever R, Wren BW, Luzio JP, Taylor PW. Administration of capsule-selective endosialidase E minimizes upregulation of organ gene expression induced by experimental systemic infection with Escherichia coli K1. Microbiology. 2010;156(Pt 7):2205–15.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Glonti T, Chanishvili N, Taylor PW. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol. 2010;108(2):695–702.PubMedCrossRefGoogle Scholar
  21. 21.
    Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol. 2017;101(8):3103–19.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Keary R, Sanz-Gaitero M, van Raaij MJ, O’Mahony J, Fenton M, McAuliffe O, Hill C, Ross RP, Coffey A. Characterization of a bacteriophage-derived murein peptidase for elimination of antibiotic-resistant Staphylococcus aureus. Curr Protein Pept Sci. 2016;17(2):183–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Drilling AJ, Cooksley C, Chan C, Wormald PJ, Vreugde S. Fighting sinus-derived Staphylococcus aureus biofilms in vitro with a bacteriophage-derived muralytic enzyme. Int Forum Allergy Rhinol. 2016;6(4):349–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Domenech M, Garcia E, Moscoso M. In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob Agents Chemother. 2011;55(9):4144–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chopra S, Harjai K, Chhibber S. Potential of sequential treatment with minocycline and S. aureus specific phage lysin in eradication of MRSA biofilms: an in vitro study. Appl Microbiol Biotechnol. 2015;99(7):3201–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, Loessner MJ, Dong S, Pritchard DG, Lee JC, Becker SC, Foster-Frey J, Donovan DM. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother. 2015;70(5):1453–65.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gutierrez D, Ruas-Madiedo P, Martinez B, Rodriguez A, Garcia P. Effective removal of staphylococcal biofilms by the endolysin LysH5. PLoS One. 2014;9(9):e107307.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Son JS, Lee SJ, Jun SY, Yoon SJ, Kang SH, Paik HR, Kang JO, Choi YJ. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cellwall-degrading enzyme. Appl Microbiol Biotechnol. 2010;86(5):1439–49.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Linden SB, Zhang H, Heselpoth RD, Shen Y, Schmelcher M, Eichenseher F, Nelson DC. Biochemical and biophysical characterization of PlyGRCS, a bacteriophage endolysin active against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol. 2015;99(2):741–52.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Briers Y, Walmagh M, Lavigne R. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J Appl Microbiol. 2011;110(3):778–85.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, Dong K, He P, Guo X, Qin J. A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol. 2017;8:293.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Troskie AM, Rautenbach M, Delattin N, Vosloo JA, Dathe M, Cammue BP, Thevissen K. Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother. 2014;58(7):3697–707.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mayer FL, Kronstad JW. Disarming fungal pathogens: Bacillus safensis inhibits virulence factor production and biofilm formation by Cryptococcus neoformans and Candida albicans. MBio. 2017;8(5):e01537–17.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sass G, Nazik H, Penner J, Shah H, Ansari SR, Clemons KV, Groleau MC, Dietl AM, Visca P, Haas H, Deziel E, Stevens DA. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J Bacteriol. 2018;200(1):e00345–17.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology. 2009;155(Pt 7):2148–56.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environ Microbiol. 2013;15(2):334–46.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science. 2010;328(5978):627–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Romero D, Aguilar C, Losick R, Kolter R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A. 2010;107(5):2230–4.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ahn KB, Baik JE, Park OJ, Yun CH, Han SH. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans. PLoS One. 2018;13(2):e0192694.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med. 2018;22(3):1972–83.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Rossoni RD, de Barros PP, de Alvarenga JA, Ribeiro FC, Velloso MDS, Fuchs BB, Mylonakis E, Jorge AOC, Junqueira JC. Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: identification of potential probiotic candidates to prevent oral candidiasis. Biofouling. 2018;34(2):212–25.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Matsubara VH, Wang Y, Bandara HM, Mayer MP, Samaranayake LP. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol. 2016;100(14):6415–26.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Vilela SF, Barbosa JO, Rossoni RD, Santos JD, Prata MC, Anbinder AL, Jorge AO, Junqueira JC. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence. 2015;6(1):29–39.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Tan Y, Leonhard M, Moser D, Ma S, Schneider-Stickler B. Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non-albicans Candida species biofilm. Arch Oral Biol. 2018;85:40–5.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Krzyściak W, Kościelniak D, Papież M, Vyhouskaya P, Zagórska-Świeży K, Kołodziej I, Bystrowska B, Jurczak A. Effect of a Lactobacillus salivarius probiotic on a double-species Streptococcus mutans and Candida albicans caries biofilm. Nutrients. 2017;9(11):E1242.PubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wannun P, Piwat S, Teanpaisan R. Purification, characterization, and optimum conditions of fermencin SD11, a bacteriocin produced by human orally Lactobacillus fermentum SD11. Appl Biochem Biotechnol. 2016;179(4):572–82.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Chopra L, Singh G, Kumar Jena K, Sahoo DK. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep. 2015;5:13412.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sharma V, Harjai K, Shukla G. Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiol (Praha). 2018;63(2):181–90.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Berrios P, Fuentes JA, Salas D, Carreno A, Aldea P, Fernandez F, Trombert AN. Inhibitory effect of biofilm-forming Lactobacillus kunkeei strains against virulent Pseudomonas aeruginosa in vitro and in honeycomb moth (Galleria mellonella) infection model. Benef Microbes. 2017;9(2):257–68.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Patel RM, Denning PW. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis. what is the current evidence? Clin Perinatol. 2013;40(1):11–25.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother. 2013;57(11):5572–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Todorov SD, de Paula OAL, Camargo AC, Lopes DA, Nero LA. Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes. Rev Argent Microbiol. 2018;50:48–55.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Lagrafeuille R, Miquel S, Balestrino D, Vareille-Delarbre M, Chain F, Langella P, Forestier C. Opposing effect of Lactobacillus on in vitro Klebsiella pneumoniae in biofilm and in an in vivo intestinal colonisation model. Benef Microbes. 2018;9(1):87–100.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Duarte AFS, Ceotto-Vigoder H, Barrias ES, Souto-Padron T, Nes IF, Bastos M. Hyicin 4244, the first sactibiotic described in staphylococci, exhibits an anti-staphylococcal biofilm activity. Int J Antimicrob Agents. 2018;51:349–56.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kim Y, Lee JW, Kang SG, Oh S, Griffiths MW. Bifidobacterium spp. influences the production of autoinducer-2 and biofilm formation by Escherichia coli O157:H7. Anaerobe. 2012;18(5):539–45.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Lewis Oscar F, Nithya C, Alharbi SA, Alharbi NS, Thajuddin N. In vitro and in silico attenuation of quorum sensing mediated pathogenicity in Pseudomonas aeruginosa using Spirulina platensis. Microb Pathog. 2018;116:246–56.CrossRefGoogle Scholar
  57. 57.
    Marangoni A, Foschi C, Micucci M, Nahui Palomino RA, Gallina Toschi T, Vitali B, Camarda L, Mandrioli M, De Giorgio M, Aldini R, Corazza I, Chiarini A, Cevenini R, Budriesi R. In vitro activity of Spirulina platensis water extract against different Candida species isolated from vulvo-vaginal candidiasis cases. PLoS One. 2017;12(11):e0188567.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Mala R, Annie Aglin A, Ruby Celsia AS, Geerthika S, Kiruthika N, VazagaPriya C, Srinivasa KK. Foley catheters functionalised with a synergistic combination of antibiotics and silver nanoparticles resist biofilm formation. IET Nanobiotechnol. 2017;11(5):612–20.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Wypij M, Swiecimska M, Czarnecka J, Dahm H, Rai M, Golinska P. Antimicrobial and cytotoxic activity of silver nanoparticles synthesized from two haloalkaliphilic actinobacterial strains alone and in combination with antibiotics. J Appl Microbiol. 2018;124:1411–24.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    drugs KCTA. Persisters come under fire. Nat Rev Drug Discov. 2014;13(1):18–9.CrossRefGoogle Scholar
  61. 61.
    Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature. 2013;503(7476):365–70.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Scopel M, Abraham WR, Henriques AT, Macedo AJ. Dipeptide cis-cyclo(Leucyl-Tyrosyl) produced by sponge associated Penicillium sp. F37 inhibits biofilm formation of the pathogenic Staphylococcus epidermidis. Bioorg Med Chem Lett. 2013;23(3):624–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Baldry M, Nielsen A, Bojer MS, Zhao Y, Friberg C, Ifrah D, Glasser Heede N, Larsen TO, Frokiaer H, Frees D, Zhang L, Dai H, Ingmer H. Norlichexanthone reduces virulence gene expression and biofilm formation in Staphylococcus aureus. PLoS One. 2016;11(12):e0168305.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    You J, Du L, King JB, Hall BE, Cichewicz RH. Small-molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida isolates. ACS Chem Biol. 2013;8(4):840–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wang X, You J, King JB, Powell DR, Cichewicz RH. Waikialoid A suppresses hyphal morphogenesis and inhibits biofilm development in pathogenic Candida albicans. J Nat Prod. 2012;75(4):707–15.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Walencka E, Wieckowska-Szakiel M, Rozalska S, Sadowska B, Rozalska B. A surface-active agent from Saccharomyces cerevisiae influences staphylococcal adhesion and biofilm development. Z Naturforsch C. 2007;62(5–6):433–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhou J, Bi S, Chen H, Chen T, Yang R, Li M, Fu Y, Jia AQ. Anti-biofilm and antivirulence activities of metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa. Front Microbiol. 2017;8:769.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sharma R, Lambu MR, Jamwal U, Rani C, Chib R, Wazir P, Mukherjee D, Chaubey A, Khan IA. Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) inhibitory activity of terreic acid isolated from Aspergillus terreus. J Biomol Screen. 2016;21(4):342–53.PubMedCrossRefGoogle Scholar
  69. 69.
    Bergamo Estrela A, Abraham W. Fungal metabolites for the control of biofilm infections. Agri. 2016;37(6):37.Google Scholar
  70. 70.
    Cushion MT, Collins MS, Linke MJ. Biofilm formation by Pneumocystis spp. Eukaryot Cell. 2009;8(2):197–206.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Li TX, Yang MH, Wang XB, Wang Y, Kong LY. Synergistic antifungal meroterpenes and dioxolanone derivatives from the endophytic fungus Guignardia sp. J Nat Prod. 2015;78(11):2511–20.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Millot M, Girardot M, Dutreix L, Mambu L, Imbert C. Antifungal and anti-biofilm activities of acetone lichen extracts against Candida albicans. Molecules. 2017;22(4):E651.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nithyanand P, Beema Shafreen RM, Muthamil S, Karutha Pandian S. Usnic acid, a lichen secondary metabolite inhibits Group A Streptococcus biofilms. Antonie Van Leeuwenhoek. 2015;107(1):263–72.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Pompilio A, Pomponio S, Di Vincenzo V, Crocetta V, Nicoletti M, Piovano M, Garbarino JA, Di Bonaventura G. Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients. Future Microbiol. 2013;8(2):281–92.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Nithyanand P, Beema Shafreen RM, Muthamil S, Karutha Pandian S. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol Res. 2015;179:20–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Pires RH, Lucarini R, Mendes-Giannini MJ. Effect of usnic acid on Candida orthopsilosis and C. parapsilosis. Antimicrob Agents Chemother. 2012;56(1):595–7.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kvasnickova E, Matatkova O, Cejkova A, Masak J. Evaluation of baicalein, chitosan and usnic acid effect on Candida parapsilosis and Candida krusei biofilm using a Cellavista device. J Microbiol Methods. 2015;118:106–12.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Taresco V, Francolini I, Padella F, Bellusci M, Boni A, Innocenti C, Martinelli A, D’Ilario L, Piozzi A. Design and characterization of antimicrobial usnic acid loaded-core/shell magnetic nanoparticles. Korean J Couns Psychother. 2015;52:72–81.Google Scholar
  79. 79.
    Martinelli A, Bakry A, D’Ilario L, Francolini I, Piozzi A, Taresco V. Release behavior and antibiofilm activity of usnic acid-loaded carboxylated poly(L-lactide) microparticles. Eur J Pharm Biopharm. 2014;88(2):415–23.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Grumezescu V, Holban AM, Grumezescu AM, Socol G, Ficai A, Vasile BS, Trusca R, Bleotu C, Lazar V, Chifiriuc CM, Mogosanu GD. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization. Biofabrication. 2014;6(3):035002.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kim S, Greenleaf R, Miller MC, Satish L, Kathju S, Ehrlich G, Post JC, Sotereanos NG, Stoodley P. Mechanical effects, antimicrobial efficacy and cytotoxicity of usnic acid as a biofilm prophylaxis in PMMA. J Mater Sci Mater Med. 2011;22(12):2773–80.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother. 2004;48(11):4360–5.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Chang W, Li Y, Zhang L, Cheng A, Liu Y, Lou H. Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans. Biol Pharm Bull. 2012;35(10):1794–801.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Gokalsin B, Sesal NC. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa. World J Microbiol Biotechnol. 2016;32(9):150.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Gokalsin B, Aksoydan B, Erman B, Sesal NC. Reducing virulence and biofilm of Pseudomonas aeruginosa by potential quorum sensing inhibitor carotenoid: zeaxanthin. Microb Ecol. 2017;74(2):466–73.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Chang W, Zhang M, Li Y, Li X, Gao Y, Xie Z, Lou H. Lichen endophyte derived pyridoxatin inactivates Candida growth by interfering with ergosterol biosynthesis. Biochim Biophys Acta. 2015;1850(9):1762–71.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Li Y, Chang W, Zhang M, Li X, Jiao Y, Lou H. Synergistic and drug-resistant reversing effects of diorcinol D combined with fluconazole against Candida albicans. FEMS Yeast Res. 2015;15(2):fov001.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Oana Săndulescu
    • 1
    Email author
  • Anca Streinu-Cercel
    • 1
  • Mihai Săndulescu
    • 2
  • Adrian Streinu-Cercel
    • 1
  1. 1.Department of Infectious Diseases I, National Institute for Infectious Diseases “Prof. Dr. Matei Balș”Carol Davila University of Medicine and PharmacyBucharestRomania
  2. 2.Department of Implant Prosthetic TherapyCarol Davila University of Medicine and PharmacyBucharestRomania

Personalised recommendations