Inflammation of the Skin and Its Therapeutic Targets

  • Clinton B. MathiasEmail author


The skin is a formidable physical barrier that protects the body from infection and other foreign irritants. Immune cells in the skin play a critical role in host defense, and include a number of specialized cell types such as keratinocytes, Langerhans cells, dendritic cells, and various subsets of T cells, which aid the body in fighting pathogens. However, when immune function in the skin is compromised, either due to a hereditary defect in skin barrier function, or as a result of unwarranted immune sensitization, these same cells can drive the development of skin disease and induce chronic cutaneous inflammation. In this chapter, we will review the immunological functions of the skin and discuss the roles of various immune cells and cellular mediators in host defense. Next, we will examine in detail the immunological basis and pathophysiology of two widely prevalent skin diseases mediated by immune cells, namely atopic dermatitis and psoriasis. The immunopathogenesis of these diseases will be discussed in light of current evidence from the literature and the roles of various subsets of helper T cells, including TH2, TH17, and TH22 cells will be highlighted. Lastly, we will examine the pharmacology of various immunotherapeutic drugs used in the treatment of these diseases. These include glucocorticoids, anti-proliferative agents, phosphodiesterase inhibitors, and various biologics such as inhibitors of IL-4, IL-13, IL-17, and IL-12 and IL-23. In the From Bench to Bedside section, we will review the discovery and development of Dupilumab for the treatment of atopic dermatitis.


Skin Atopic dermatitis Psoriasis Allergy Atopy TH2 cells TH17 cells TH22 cells Mast cells IgE antibodies Eosinophils IL-4 IL-13 IL-17 IL-23 Dupilumab Calcineurin inhibitors TNF inhibitors IL-17 antagonists IL-12/IL-23 antagonists 

Suggested Reading

  1. AbuHilal M, Walsh S, Shear N. The role of IL-17 in the pathogenesis of psoriasis and update on IL-17 inhibitors for the treatment of plaque psoriasis. J Cutan Med Surg. 2016;20:509–16.PubMedCrossRefGoogle Scholar
  2. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8:942–9.PubMedCrossRefGoogle Scholar
  3. Akdis CA, Akdis M. Immunological differences between intrinsic and extrinsic types of atopic dermatitis. Clin Exp Allergy. 2003;33:1618–21.PubMedCrossRefGoogle Scholar
  4. Akdis CA, et al. Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL consensus report. Allergy. 2006;61:969–87.PubMedCrossRefGoogle Scholar
  5. Amano W, et al. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J Allergy Clin Immunol. 2015;136:667–77.e667.PubMedCrossRefGoogle Scholar
  6. Armstrong AW, et al. Effect of ixekizumab treatment on work productivity for patients with moderate-to-severe plaque psoriasis: analysis of results from 3 randomized phase 3 clinical trials. JAMA Dermatol. 2016;152:661–9.PubMedCrossRefGoogle Scholar
  7. Bao L, Zhang H, Chan LS. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT. 2013;2:e24137.PubMedPubMedCentralGoogle Scholar
  8. Beck LA, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371:130–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bissonnette R, et al. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br J Dermatol. 2016;175:902–11.CrossRefGoogle Scholar
  10. Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol. 2018;55:379–90.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blauvelt A, et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate-to-severe plaque psoriasis up to 1 year: results from the CLEAR study. J Am Acad Dermatol. 2017;76:60–9.e69.PubMedCrossRefGoogle Scholar
  12. Bonefeld CM, Geisler C. The role of innate lymphoid cells in healthy and inflamed skin. Immunol Lett. 2016;179:25–8.PubMedCrossRefGoogle Scholar
  13. Bruggen MC, et al. In situ mapping of innate lymphoid cells in human skin: evidence for remarkable differences between Normal and inflamed skin. J Invest Dermatol. 2016;136:2396–405.PubMedCrossRefGoogle Scholar
  14. Brunner PM, et al. A mild topical steroid leads to progressive anti-inflammatory effects in the skin of patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol. 2016;138:169–78.PubMedCrossRefGoogle Scholar
  15. Brunner PM, Guttman-Yassky E, Leung DY. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol. 2017a;139:S65–76.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brunner PM, et al. Increasing comorbidities suggest that atopic dermatitis is a systemic disorder. J Invest Dermatol. 2017b;137:18–25.PubMedCrossRefGoogle Scholar
  17. Brunner PM, et al. Early-onset pediatric atopic dermatitis is characterized by TH2/TH17/TH22-centered inflammation and lipid alterations. J Allergy Clin Immunol. 2018;141:2094–106.PubMedCrossRefGoogle Scholar
  18. Castro M, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med. 2018;378:2486–96.PubMedCrossRefGoogle Scholar
  19. Chalmers JR, et al. Report from the fifth international consensus meeting to harmonize core outcome measures for atopic eczema/dermatitis clinical trials (HOME initiative). Br J Dermatol. 2018;178:e332–41.PubMedCrossRefGoogle Scholar
  20. Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987;166:1229–44.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Coffman RL. Converging discoveries: the first reports of IL-4. J Immunol. 2013;190:847–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cole C, et al. Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis. J Allergy Clin Immunol. 2014;134:82–91.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Czarnowicki T, Krueger JG, Guttman-Yassky E. Skin barrier and immune dysregulation in atopic dermatitis: an evolving story with important clinical implications. J Allergy Clin Immunol Pract. 2014;2:371–9;. quiz 380-371.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Czarnowicki T, Krueger JG, Guttman-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol. 2017;139:1723–34.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Davis DM, Borok J, Udkoff J, Lio P, Spergel J. Atopic dermatitis: phototherapy and systemic therapy. Semin Cutan Med Surg. 2017;36:118–23.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dong J, Goldenberg G. New biologics in psoriasis: an update on IL-23 and IL-17 inhibitors. Cutis. 2017;99:123–7.PubMedPubMedCentralGoogle Scholar
  27. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. 2009;10:857–63.PubMedCrossRefGoogle Scholar
  28. Egawa G, Kabashima K. Multifactorial skin barrier deficiency and atopic dermatitis: essential topics to prevent the atopic march. J Allergy Clin Immunol. 2016;138:350–8.e351.PubMedCrossRefGoogle Scholar
  29. Egeberg A. Phase 3 trials of Ixekizumab in moderate-to-severe plaque psoriasis. N Engl J Med. 2016;375:2101–2.PubMedCrossRefGoogle Scholar
  30. Eichenfield LF, Stein Gold LF. Systemic therapy of atopic dermatitis: welcome to the revolution. Semin Cutan Med Surg. 2017;36:S103–5.PubMedPubMedCentralGoogle Scholar
  31. Eichenfield LF, et al. Long-term safety of crisaborole ointment 2% in children and adults with mild to moderate atopic dermatitis. J Am Acad Dermatol. 2017;77:641–9.e645.CrossRefGoogle Scholar
  32. Esaki H, et al. Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J Allergy Clin Immunol. 2016;138:1639–51.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Eyerich K, et al. IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response. J Allergy Clin Immunol. 2009a;123:59–66.e54.PubMedCrossRefGoogle Scholar
  34. Eyerich S, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009b;119:3573–85.PubMedPubMedCentralGoogle Scholar
  35. Eyerich S, et al. Mutual antagonism of T cells causing psoriasis and atopic eczema. N Engl J Med. 2011;365:231–8.PubMedCrossRefGoogle Scholar
  36. Eyerich K, Dimartino V, Cavani A. IL-17 and IL-22 in immunity: driving protection and pathology. Eur J Immunol. 2017;47:607–14.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Furue M, Kadono T. “Inflammatory skin march” in atopic dermatitis and psoriasis. Inflamm Res. 2017;66:833–42.PubMedCrossRefGoogle Scholar
  38. Ganguly D, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206:1983–94.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gisondi P, Girolomoni G. Apremilast in the therapy of moderate-to-severe chronic plaque psoriasis. Drug Des Devel Ther. 2016;10:1763–70.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gittler JK, et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130:1344–54.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Glatzer F, et al. Histamine induces proliferation in keratinocytes from patients with atopic dermatitis through the histamine 4 receptor. J Allergy Clin Immunol. 2013;132:1358–67.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gordon KB, Colombel JF, Hardin DS. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N Engl J Med. 2016a;375:2102.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gordon KB, et al. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N Engl J Med. 2016b;375:345–56.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gottlieb AB, et al. Efficacy, tolerability, and pharmacodynamics of apremilast in recalcitrant plaque psoriasis: a phase II open-label study. J Drugs Dermatol. 2013;12:888–97.PubMedPubMedCentralGoogle Scholar
  45. Griffin GK, et al. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;188:6287–99.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Grunig G, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 1998;282:2261–3.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gutowska-Owsiak D, et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. 2012;21:104–10.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Guttman-Yassky E, Krueger JG, Lebwohl MG. Systemic immune mechanisms in atopic dermatitis and psoriasis with implications for treatment. Exp Dermatol. 2018;27:409–17.PubMedCrossRefGoogle Scholar
  49. Halim TY, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity. 2014;40:425–35.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hamid Q, Boguniewicz M, Leung DY. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest. 1994;94:870–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hamilton JD, et al. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol. 2014;134:1293–300.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hanifin JM, Reed ML, Eczema P, Impact Working G. A population-based survey of eczema prevalence in the United States. Dermatitis. 2007;18:82–91.PubMedCrossRefPubMedCentralGoogle Scholar
  53. He JQ, et al. Genetic variants of the IL13 and IL4 genes and atopic diseases in at-risk children. Genes Immun. 2003;4:385–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hijnen DJ, ten Berge O, Timmer-de Mik L, Bruijnzeel-Koomen CA, de Bruin-Weller MS. Efficacy and safety of long-term treatment with cyclosporin A for atopic dermatitis. J Eur Acad Dermatol Venereol. 2007;21:85–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Howard M, et al. Identification of a T cell-derived b cell growth factor distinct from interleukin 2. J Exp Med. 1982;155:914–23.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Howell MD, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2009;124:R7–R12.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Howell MD, Parker ML, Mustelin T, Ranade K. Past, present, and future for biologic intervention in atopic dermatitis. Allergy. 2015;70:887–96.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365:1315–27.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Isakson PC, Pure E, Vitetta ES, Krammer PH. T cell-derived B cell differentiation factor(s). Effect on the isotype switch of murine B cells. J Exp Med. 1982;155:734–48.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011;34:149–62.CrossRefGoogle Scholar
  61. Iwasaki M, et al. Association of a new-type prostaglandin D2 receptor CRTH2 with circulating T helper 2 cells in patients with atopic dermatitis. J Invest Dermatol. 2002;119:609–16.PubMedCrossRefGoogle Scholar
  62. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature. 1986;321:522–5.PubMedCrossRefGoogle Scholar
  63. Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol. 2010;130:1373–83.PubMedCrossRefGoogle Scholar
  64. Khattri S, et al. Cyclosporine in patients with atopic dermatitis modulates activated inflammatory pathways and reverses epidermal pathology. J Allergy Clin Immunol. 2014;133:1626–34.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Khattri S, et al. Efficacy and safety of ustekinumab treatment in adults with moderate-to-severe atopic dermatitis. Exp Dermatol. 2017;26:28–35.PubMedCrossRefGoogle Scholar
  66. Kim BS, et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med. 2013;5:170ra116.CrossRefGoogle Scholar
  67. Kim J, et al. Epidermal thymic stromal lymphopoietin predicts the development of atopic dermatitis during infancy. J Allergy Clin Immunol. 2016;137:1282–5.e1284.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kopp T, et al. Clinical improvement in psoriasis with specific targeting of interleukin-23. Nature. 2015;521:222–6.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kupetsky EA, Mathers AR, Ferris LK. Anti-cytokine therapy in the treatment of psoriasis. Cytokine. 2013;61:704–12.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lande R, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–9.PubMedCrossRefGoogle Scholar
  71. Lande R, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5:5621.PubMedCrossRefGoogle Scholar
  72. Langley RG, et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. N Engl J Med. 2014;371:326–38.CrossRefGoogle Scholar
  73. Lebwohl M, et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med. 2015;373:1318–28.PubMedCrossRefGoogle Scholar
  74. Lee F, et al. Isolation and characterization of a mouse interleukin cDNA clone that expresses B-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities. Proc Natl Acad Sci U S A. 1986;83:2061–5.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. J Allergy Clin Immunol. 2014;134:769–79.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Levy LL, Urban J, King BA. Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. J Am Acad Dermatol. 2015;73:395–9.CrossRefGoogle Scholar
  77. Lopez-Ferrer A, Vilarrasa E, Gich IJ, Puig L. Adalimumab for the treatment of psoriasis in real life: a retrospective cohort of 119 patients at a single Spanish centre. Br J Dermatol. 2013;169:1141–7.PubMedCrossRefGoogle Scholar
  78. Lopez-Ferrer A, Vilarrasa E, Puig L. Secukinumab (AIN457) for the treatment of psoriasis. Expert Rev Clin Immunol. 2015;11:1177–88.PubMedCrossRefGoogle Scholar
  79. Margolis DJ, et al. The persistence of atopic dermatitis and filaggrin (FLG) mutations in a US longitudinal cohort. J Allergy Clin Immunol. 2012;130:912–7.PubMedPubMedCentralCrossRefGoogle Scholar
  80. McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131:280–91.PubMedCrossRefGoogle Scholar
  81. McKenzie AN, et al. Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci U S A. 1993;90:3735–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mease PJ, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med. 2015;373:1329–39.PubMedCrossRefGoogle Scholar
  83. Mease PJ, et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum Dis. 2017;76:79–87.PubMedCrossRefGoogle Scholar
  84. Mennini M, Dahdah L, Fiocchi A. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2017;376:1090.PubMedCrossRefGoogle Scholar
  85. Menter A, et al. Efficacy of ixekizumab compared to etanercept and placebo in patients with moderate-to-severe plaque psoriasis and non-pustular palmoplantar involvement: results from three phase 3 trials (UNCOVER-1, UNCOVER-2 and UNCOVER-3). J Eur Acad Dermatol Venereol. 2017;31:1686–92.CrossRefGoogle Scholar
  86. Minty A, et al. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature. 1993;362:248–50.PubMedCrossRefGoogle Scholar
  87. Montaldo E, Juelke K, Romagnani C. Group 3 innate lymphoid cells (ILC3s): origin, differentiation, and plasticity in humans and mice. Eur J Immunol. 2015;45:2171–82.PubMedCrossRefGoogle Scholar
  88. Moreno AS, McPhee R, Arruda LK, Howell MD. Targeting the T helper 2 inflammatory axis in atopic dermatitis. Int Arch Allergy Immunol. 2016;171:71–80.PubMedCrossRefGoogle Scholar
  89. Morgan JG, Dolganov GM, Robbins SE, Hinton LM, Lovett M. The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes. Nucleic Acids Res. 1992;20:5173–9.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A. 1984;81:6851–5.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–57.PubMedGoogle Scholar
  92. Nakajima S, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol. 2012;129:1048–1055 e1046.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nast A, Jacobs A, Rosumeck S, Werner RN. Efficacy and safety of systemic long-term treatments for moderate-to-severe psoriasis: a systematic review and meta-analysis. J Invest Dermatol. 2015;135:2641–8.PubMedCrossRefGoogle Scholar
  94. Nemoto O, et al. The first trial of CIM331, a humanized antihuman interleukin-31 receptor A antibody, in healthy volunteers and patients with atopic dermatitis to evaluate safety, tolerability and pharmacokinetics of a single dose in a randomized, double-blind, placebo-controlled study. Br J Dermatol. 2016;174:296–304.CrossRefGoogle Scholar
  95. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361:496–509.PubMedCrossRefGoogle Scholar
  96. Niebuhr M, Scharonow H, Gathmann M, Mamerow D, Werfel T. Staphylococcal exotoxins are strong inducers of IL-22: a potential role in atopic dermatitis. J Allergy Clin Immunol. 2010;126:1176–83.e1174.PubMedCrossRefGoogle Scholar
  97. Noda S, Krueger JG, Guttman-Yassky E. The translational revolution and use of biologics in patients with inflammatory skin diseases. J Allergy Clin Immunol. 2015a;135:324–36.PubMedCrossRefGoogle Scholar
  98. Noda S, et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol. 2015b;136:1254–64.PubMedCrossRefGoogle Scholar
  99. Nograles KE, et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol. 2008;159:1092–102.PubMedPubMedCentralGoogle Scholar
  100. Nograles KE, et al. IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol. 2009;123:1244–52.e1242.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Noma Y, et al. Cloning of cDNA encoding the murine IgG1 induction factor by a novel strategy using SP6 promoter. Nature. 1986;319:640–6.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Nomura I, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171:3262–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Oldhoff JM, et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy. 2005;60:693–6.CrossRefGoogle Scholar
  104. Oliva M, Renert-Yuval Y, Guttman-Yassky E. The ‘omics’ revolution: redefining the understanding and treatment of allergic skin diseases. Curr Opin Allergy Clin Immunol. 2016;16:469–76.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Ong PY, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347:1151–60.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Oppmann B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715–25.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Paller AS, et al. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J Am Acad Dermatol. 2016;75:494–503.e496.CrossRefGoogle Scholar
  108. Papp KA, et al. A prospective phase III, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br J Dermatol. 2016;175:273–86.CrossRefGoogle Scholar
  109. Parham C, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699–708.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Perez-Aso M, et al. Apremilast, a novel phosphodiesterase 4 (PDE4) inhibitor, regulates inflammation through multiple cAMP downstream effectors. Arthritis Res Ther. 2015;17:249.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Pincelli C, Schafer PH, French LE, Augustin M, Krueger JG. Mechanisms underlying the clinical effects of apremilast for psoriasis. J Drugs Dermatol. 2018;17:835–40.PubMedGoogle Scholar
  112. Puig L, Lopez A, Vilarrasa E, Garcia I. Efficacy of biologics in the treatment of moderate-to-severe plaque psoriasis: a systematic review and meta-analysis of randomized controlled trials with different time points. J Eur Acad Dermatol Venereol. 2014;28:1633–53.PubMedCrossRefGoogle Scholar
  113. Rabenhorst A, Hartmann K. Interleukin-31: a novel diagnostic marker of allergic diseases. Curr Allergy Asthma Rep. 2014;14:423.PubMedCrossRefGoogle Scholar
  114. Robinson DS, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992;326:298–304.PubMedCrossRefGoogle Scholar
  115. Samrao A, Berry TM, Goreshi R, Simpson EL. A pilot study of an oral phosphodiesterase inhibitor (apremilast) for atopic dermatitis in adults. Arch Dermatol. 2012;148:890–7.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Schafer P. Apremilast mechanism of action and application to psoriasis and psoriatic arthritis. Biochem Pharmacol. 2012;83:1583–90.PubMedCrossRefGoogle Scholar
  117. Schafer PH, et al. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell Signal. 2014;26:2016–29.PubMedCrossRefGoogle Scholar
  118. Schafer PH, Chen P, Fang L, Wang A, Chopra R. The pharmacodynamic impact of apremilast, an oral phosphodiesterase 4 inhibitor, on circulating levels of inflammatory biomarkers in patients with psoriatic arthritis: substudy results from a phase III, randomized, placebo-controlled trial (PALACE 1). J Immunol Res. 2015;2015:906349.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Schafer PH, et al. Phosphodiesterase 4 in inflammatory diseases: effects of apremilast in psoriatic blood and in dermal myofibroblasts through the PDE4/CD271 complex. Cell Signal. 2016;28:753–63.PubMedCrossRefGoogle Scholar
  120. Schurich A, Raine C, Morris V, Ciurtin C. The role of IL-12/23 in T cell-related chronic inflammation: implications of immunodeficiency and therapeutic blockade. Rheumatology (Oxford). 2018;57:246–54.CrossRefGoogle Scholar
  121. Sehra S, et al. IL-4 regulates skin homeostasis and the predisposition toward allergic skin inflammation. J Immunol. 2010;184:3186–90.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Silverberg JI. Persistence of childhood eczema into adulthood. JAMA Dermatol. 2014;150:591–2.PubMedCrossRefGoogle Scholar
  123. Silverberg JI. Association between adult atopic dermatitis, cardiovascular disease, and increased heart attacks in three population-based studies. Allergy. 2015;70:1300–8.PubMedCrossRefGoogle Scholar
  124. Silverberg JI, Simpson EL. Associations of childhood eczema severity: a US population-based study. Dermatitis. 2014;25:107–14.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Simon D. Systemic therapy of atopic dermatitis in children and adults. Curr Probl Dermatol. 2011;41:156–64.PubMedCrossRefGoogle Scholar
  126. Simon D, Bieber T. Systemic therapy for atopic dermatitis. Allergy. 2014;69:46–55.PubMedCrossRefGoogle Scholar
  127. Simpson EL, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2016;375:2335–48.CrossRefGoogle Scholar
  128. Simpson EL, Akinlade B, Ardeleanu M. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2017a;376:1090–1.PubMedCrossRefGoogle Scholar
  129. Simpson EL, et al. When does atopic dermatitis warrant systemic therapy? Recommendations from an expert panel of the International Eczema Council. J Am Acad Dermatol. 2017b;77:623–33.PubMedCrossRefGoogle Scholar
  130. Slater NA, Morrell DS. Systemic therapy of childhood atopic dermatitis. Clin Dermatol. 2015;33:289–99.PubMedCrossRefGoogle Scholar
  131. Sofen H, et al. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J Allergy Clin Immunol. 2014;133:1032–40.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011;12:383–90.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Spertino J, Lopez-Ferrer A, Vilarrasa E, Puig L. Long-term study of infliximab for psoriasis in daily practice: drug survival depends on combined treatment, obesity and infusion reactions. J Eur Acad Dermatol Venereol. 2014;28:1514–21.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Suarez-Farinas M, et al. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol. 2013;132:361–70.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Thaci D, et al. Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial. Lancet. 2016;387:40–52.CrossRefGoogle Scholar
  136. Torres T, Romanelli M, Chiricozzi A. A revolutionary therapeutic approach for psoriasis: bispecific biological agents. Expert Opin Investig Drugs. 2016;25:751–4.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Ulven T, Kostenis E. Novel CRTH2 antagonists: a review of patents from 2006 to 2009. Expert Opin Ther Pat. 2010;20:1505–30.PubMedCrossRefPubMedCentralGoogle Scholar
  138. van de Kerkhof PC, et al. Secukinumab long-term safety experience: a pooled analysis of 10 phase II and III clinical studies in patients with moderate to severe plaque psoriasis. J Am Acad Dermatol. 2016;75:83–98.e84.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Veilleux MS, Shear NH. Biologics in patients with skin diseases. J Allergy Clin Immunol. 2017;139:1423–30.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Vena GA, Vestita M, Cassano N. Psoriasis and cardiovascular disease. Dermatol Ther. 2010;23:144–51.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Vilarrasa E, et al. ORBIT (outcome and retention rate of biologic treatments for psoriasis): a retrospective observational study on biologic drug survival in daily practice. J Am Acad Dermatol. 2016;74:1066–72.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Volf EM, Au SC, Dumont N, Scheinman P, Gottlieb AB. A phase 2, open-label, investigator-initiated study to evaluate the safety and efficacy of apremilast in subjects with recalcitrant allergic contact or atopic dermatitis. J Drugs Dermatol. 2012;11:341–6.Google Scholar
  143. Walker C, et al. Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am Rev Respir Dis. 1992;146:109–15.PubMedCrossRefGoogle Scholar
  144. Wang YH, Liu YJ. Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. Clin Exp Allergy. 2009;39:798–806.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Welsch K, Holstein J, Laurence A, Ghoreschi K. Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol. 2017;47:1096–107.PubMedCrossRefGoogle Scholar
  146. Werfel T, Biedermann T. Current novel approaches in systemic therapy of atopic dermatitis: specific inhibition of cutaneous Th2 polarized inflammation and itch. Curr Opin Allergy Clin Immunol. 2015;15:446–52.PubMedCrossRefGoogle Scholar
  147. Werfel T, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138:336–49.CrossRefGoogle Scholar
  148. Wills-Karp M, et al. Interleukin-13: central mediator of allergic asthma. Science. 1998;282:2258–61.PubMedCrossRefGoogle Scholar
  149. Wolk K, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol. 2006;36:1309–23.PubMedCrossRefGoogle Scholar
  150. Wollenberg A, et al. Treatment of atopic dermatitis with tralokinumab, an anti-IL-13 mAb. J Allergy Clin Immunol. 2019;143:135–41.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Yiu ZZ, Warren RB. Novel Oral therapies for psoriasis and psoriatic arthritis. Am J Clin Dermatol. 2016;17:191–200.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Zheng T, et al. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol. 2009;129:742–51.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Ziegler SF, Liu YJ. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat Immunol. 2006;7:709–14.PubMedCrossRefGoogle Scholar
  154. Zurawski SM, Vega F Jr, Huyghe B, Zurawski G. Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J. 1993;12:2663–70.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldUSA

Personalised recommendations