Respiratory Disorders of the Immune System and Their Pharmacological Treatment

  • Clinton B. MathiasEmail author


The respiratory system comprising of the upper airway passages and bronchopulmonary tissues including the trachea and the lung are vital for the processes of gas exchange and cellular respiration. Inflammatory disorders of the lower respiratory tract such as asthma and chronic obstructive pulmonary disease (COPD) are a major cause of debilitating illness throughout the world and significantly contribute to mortality and increases in health care costs. In this chapter, we discuss the pathophysiology and the immunological basis of these diseases as well as the pharmacology of the drugs used in their treatment. The specific contributions of immune cells including TH2 cells, mast cells, and type 2 innate lymphoid cells are described in detail. Novel therapeutic agents in the treatment of asthma and COPD are also discussed. Lastly, the discovery of IgE antibodies is highlighted in the Bench to Bedside section.


Asthma Chronic obstructive pulmonary disease (COPD) Allergy Hypersensitivity Atopy Airway hyperresponsiveness Eosinophilia Airway obstruction Airway remodeling Mucus plugging Chronic bronchitis Emphysema TH2 cells Mast cells IgE antibodies Allergic rhinitis β2-agonists Inhaled corticosteroids Anti-muscarinic agents Leukotriene receptor antagonists Omalizumab Anti-IL-5 antagonists 

Suggested Reading

  1. Akbari O, Stock P, DeKruyff RH, Umetsu DT. Role of regulatory T cells in allergy and asthma. Curr Opin Immunol. 2003;15:627–33.PubMedCrossRefGoogle Scholar
  2. Arthur G, Bradding P. New developments in mast cell biology: clinical implications. Chest. 2016;150:680–93.PubMedCrossRefGoogle Scholar
  3. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517:293–301.PubMedCrossRefGoogle Scholar
  4. Azzawi M, Bradley B, Jeffery PK, Frew AJ, Wardlaw AJ, Knowles G, et al. Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am Rev Respir Dis. 1990;142:1407–13.PubMedCrossRefGoogle Scholar
  5. Azzawi M, Johnston PW, Majumdar S, Kay AB, Jeffery PK. T lymphocytes and activated eosinophils in airway mucosa in fatal asthma and cystic fibrosis. Am Rev Respir Dis. 1992;145:1477–82.PubMedCrossRefGoogle Scholar
  6. Barnes PJ. Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol Allergy Clin N Am. 2005;25:451–68.CrossRefGoogle Scholar
  7. Barnes PJ. Theophylline. Am J Respir Crit Care Med. 2013;188:901–6.PubMedCrossRefGoogle Scholar
  8. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138:16–27.PubMedCrossRefGoogle Scholar
  9. Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017;131:1541–58.CrossRefGoogle Scholar
  10. Barnes PJ, Adcock IM. How do corticosteroids work in asthma? Ann Intern Med. 2003;139:359–70.PubMedCrossRefGoogle Scholar
  11. Barnes KC, Neely JD, Duffy DL, Freidhoff LR, Breazeale DR, Schou C, et al. Linkage of asthma and total serum IgE concentration to markers on chromosome 12q: evidence from Afro-Caribbean and Caucasian populations. Genomics. 1996;37:41–50.PubMedCrossRefGoogle Scholar
  12. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003;22:672–88.CrossRefGoogle Scholar
  13. Barnes PJ, Burney PG, Silverman EK, Celli BR, Vestbo J, Wedzicha JA, et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015;1:15076.PubMedCrossRefGoogle Scholar
  14. Begin P, Nadeau KC. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin Immunol. 2014;10:27.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brusselle GG, Kips JC, Tavernier JH, van der Heyden JG, Cuvelier CA, Pauwels RA, et al. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy. 1994;24:73–80.PubMedCrossRefGoogle Scholar
  16. Burton OT, Oettgen HC. Beyond immediate hypersensitivity: evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol Rev. 2011;242:128–43.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Busse WW, Lemanske RF Jr. Asthma. N Engl J Med. 2001;344:350–62.PubMedCrossRefGoogle Scholar
  18. Busse WW, Lemanske RF Jr. Management of asthma exacerbations. Thorax. 2004;59:545–6.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Busse WW, Coffman RL, Gelfand EW, Kay AB, Rosenwasser LJ. Mechanisms of persistent airway inflammation in asthma. A role for T cells and T-cell products. Am J Respir Crit Care Med. 1995;152:388–93.PubMedCrossRefGoogle Scholar
  20. Busse WW, Lemanske RF Jr, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet. 2010;376:826–34.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cazzola M, Page CP, Rogliani P, Matera MG. beta2-agonist therapy in lung disease. Am J Respir Crit Care Med. 2013;187:690–6.PubMedCrossRefGoogle Scholar
  22. Chatila TA. Interleukin-4 receptor signaling pathways in asthma pathogenesis. Trends Mol Med. 2004;10:493–9.PubMedCrossRefGoogle Scholar
  23. Choby GW, Lee S. Pharmacotherapy for the treatment of asthma: current treatment options and future directions. Int Forum Allergy Rhinol. 2015;5(Suppl 1):S35–40.PubMedCrossRefGoogle Scholar
  24. Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol. 2004;22:789–815.PubMedCrossRefGoogle Scholar
  25. Corrigan CJ, Hartnell A, Kay AB. T lymphocyte activation in acute severe asthma. Lancet. 1988;1:1129–32.PubMedCrossRefGoogle Scholar
  26. Das J, Chen CH, Yang L, Cohn L, Ray P, Ray A. A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol. 2001;2:45–50.PubMedCrossRefGoogle Scholar
  27. Deckers J, De Bosscher K, Lambrecht BN, Hammad H. Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. Immunol Rev. 2017;278:131–44.PubMedCrossRefGoogle Scholar
  28. Epstein MM. Do mouse models of allergic asthma mimic clinical disease? Int Arch Allergy Immunol. 2004;133:84–100.PubMedCrossRefGoogle Scholar
  29. Finkelman FD. Identification of IgE as the allergy-associated Ig isotype. J Immunol. 2017;198:3–4.PubMedCrossRefGoogle Scholar
  30. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996;183:195–201.PubMedCrossRefGoogle Scholar
  31. Fulkerson PC, Rothenberg ME, Hogan SP. Building a better mouse model: experimental models of chronic asthma. Clin Exp Allergy. 2005;35:1251–3.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Galli SJ, Tsai M. Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci. 2008;49:7–19.PubMedCrossRefGoogle Scholar
  33. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18:693–704.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gavett SH, Chen X, Finkelman F, Wills-Karp M. Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol. 1994;10:587–93.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, et al. The biology of IGE and the basis of allergic disease. Annu Rev Immunol. 2003;21:579–628.PubMedCrossRefGoogle Scholar
  36. Gross NJ, Barnes PJ. New therapies for asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;195:159–66.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Grumelli S, Corry DB, Song LZ, Song L, Green L, Huh J, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med. 2004;1:e8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 1998;282:2261–3.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gurish MF, Austen KF. The diverse roles of mast cells. J Exp Med. 2001;194:F1–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Halim TY, Steer CA, Matha L, Gold MJ, Martinez-Gonzalez I, McNagny KM, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity. 2014;40:425–35.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hamelmann E, Gelfand EW. IL-5-induced airway eosinophilia--the key to asthma? Immunol Rev. 2001;179:182–91.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hamelmann E, Oshiba A, Schwarze J, Bradley K, Loader J, Larsen GL, et al. Allergen-specific IgE and IL-5 are essential for the development of airway hyperresponsiveness. Am J Respir Cell Mol Biol. 1997;16:674–82.PubMedCrossRefGoogle Scholar
  43. Hamid Q, Azzawi M, Ying S, Moqbel R, Wardlaw AJ, Corrigan CJ, et al. Expression of mRNA for interleukin-5 in mucosal bronchial biopsies from asthma. J Clin Invest. 1991;87:1541–6.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43:29–40.CrossRefGoogle Scholar
  45. He JQ, Hallstrand TS, Knight D, Chan-Yeung M, Sandford A, Tripp B, et al. A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness. J Allergy Clin Immunol. 2009;124:222–9.PubMedCrossRefGoogle Scholar
  46. Hekking PP, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH. The prevalence of severe refractory asthma. J Allergy Clin Immunol. 2015;135:896–902.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hershey GK, Friedrich MF, Esswein LA, Thomas ML, Chatila TA. The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor. N Engl J Med. 1997;337:1720–5.PubMedCrossRefGoogle Scholar
  48. Hirota N, Martin JG. Mechanisms of airway remodeling. Chest. 2013;144:1026–32.PubMedCrossRefGoogle Scholar
  49. Holt PG, Strickland DH, Wikstrom ME, Jahnsen FL. Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol. 2008;8:142–52.PubMedCrossRefGoogle Scholar
  50. Johansson SG. The history of IgE: from discovery to 2010. Curr Allergy Asthma Rep. 2011;11:173–7.PubMedCrossRefGoogle Scholar
  51. Kabesch M, Tzotcheva I, Carr D, Hofler C, Weiland SK, Fritzsch C, et al. A complete screening of the IL4 gene: novel polymorphisms and their association with asthma and IgE in childhood. J Allergy Clin Immunol. 2003;112:893–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kabesch M, Schedel M, Carr D, Woitsch B, Fritzsch C, Weiland SK, et al. IL-4/IL-13 pathway genetics strongly influence serum IgE levels and childhood asthma. J Allergy Clin Immunol. 2006;117:269–74.PubMedCrossRefGoogle Scholar
  53. Kalesnikoff J, Galli SJ. New developments in mast cell biology. Nat Immunol. 2008;9:1215–23.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kawakami T, Blank U. From IgE to omalizumab. J Immunol. 2016;197:4187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kay DSRAB. Mechanisms of allergic asthma: a Th2 disease. In: Yssel JBH, editor. Immunotherapy in asthma. First ed. New York: Marcel Dekker, Inc; 1999. p. 19–41.Google Scholar
  56. Kay MLAB. CD4 T lymphocytes in allergic asthma. In: Lambrecht BN, Hoogsteden H, Diamant Z, editors. The immunological basis of asthma. 1st ed. New York: Marcel Dekker, Inc; 2003. p. 53–81.Google Scholar
  57. Kim HY, DeKruyff RH, Umetsu DT. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol. 2010;11:577–84.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Knutsen AP, Bush RK, Demain JG, Denning DW, Dixit A, Fairs A, et al. Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol. 2012;129:280–91; quiz 92–3.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kubo M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev. 2017;278:162–72.PubMedCrossRefGoogle Scholar
  60. Lambrecht BN, Hammad H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nat Rev Immunol. 2003;3:994–1003.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lambrecht BN, Hammad H. Biology of lung dendritic cells at the origin of asthma. Immunity. 2009;31:412–24.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lambrecht BN, Hammad H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol. 2012;30:243–70.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lee NA, Gelfand EW, Lee JJ. Pulmonary T cells and eosinophils: coconspirators or independent triggers of allergic respiratory pathology? J Allergy Clin Immunol. 2001;107:945–57.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lemanske RF Jr, Busse WW. Asthma: clinical expression and molecular mechanisms. J Allergy Clin Immunol. 2010;125:S95–102.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Liang HE, Reinhardt RL, Bando JK, Sullivan BM, Ho IC, Locksley RM. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat Immunol. 2011;13:58–66.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol. 2010;10:838–48.PubMedCrossRefGoogle Scholar
  67. Lloyd CM, Gonzalo JA, Coyle AJ, Gutierrez-Ramos JC. Mouse models of allergic airway disease. Adv Immunol. 2001;77:263–95.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127:355–60.PubMedCrossRefGoogle Scholar
  69. Lukacs NW, Strieter RM, Chensue SW, Kunkel SL. Interleukin-4-dependent pulmonary eosinophil infiltration in a murine model of asthma. Am J Respir Cell Mol Biol. 1994;10:526–32.PubMedCrossRefPubMedCentralGoogle Scholar
  70. MacKenzie JR, Mattes J, Dent LA, Foster PS. Eosinophils promote allergic disease of the lung by regulating CD4(+) Th2 lymphocyte function. J Immunol. 2001;167:3146–55.PubMedCrossRefGoogle Scholar
  71. Martinez FD. Early-life origins of chronic obstructive pulmonary disease. N Engl J Med. 2016;375:871–8.PubMedCrossRefGoogle Scholar
  72. Mathias CB. Natural killer cells in the development of asthma. Curr Allergy Asthma Rep. 2015;15:500.PubMedCrossRefGoogle Scholar
  73. Mathias CB, Freyschmidt EJ, Caplan B, Jones T, Poddighe D, Xing W, et al. IgE influences the number and function of mature mast cells, but not progenitor recruitment in allergic pulmonary inflammation. J Immunol. 2009;182:2416–24.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mattes J, Yang M, Siqueira A, Clark K, MacKenzie J, McKenzie AN, et al. IL-13 induces airways hyperreactivity independently of the IL-4R alpha chain in the allergic lung. J Immunol. 2001;167:1683–92.PubMedCrossRefGoogle Scholar
  75. Medoff BD, Thomas SY, Luster AD. T cell trafficking in allergic asthma: the ins and outs. Annu Rev Immunol. 2008;26:205–32.PubMedCrossRefGoogle Scholar
  76. Moller GM, Overbeek SE, Van Helden-Meeuwsen CG, Van Haarst JM, Prens EP, Mulder PG, et al. Increased numbers of dendritic cells in the bronchial mucosa of atopic asthmatic patients: downregulation by inhaled corticosteroids. Clin Exp Allergy. 1996;26:517–24.PubMedCrossRefGoogle Scholar
  77. Ober C. Susceptibility genes in asthma and allergy. Curr Allergy Asthma Rep. 2001;1:174–9.PubMedCrossRefGoogle Scholar
  78. Ober C, Leavitt SA, Tsalenko A, Howard TD, Hoki DM, Daniel R, et al. Variation in the interleukin 4-receptor alpha gene confers susceptibility to asthma and atopy in ethnically diverse populations. Am J Hum Genet. 2000;66:517–26.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Oettgen HC, Geha RS. IgE regulation and roles in asthma pathogenesis. J Allergy Clin Immunol. 2001;107:429–40.PubMedCrossRefGoogle Scholar
  80. Pejler G, Ronnberg E, Waern I, Wernersson S. Mast cell proteases: multifaceted regulators of inflammatory disease. Blood. 2010;115:4981–90.PubMedCrossRefGoogle Scholar
  81. Platts-Mills TAE. The continuing effect of the discovery of IgE by Kimishige Ishizaka. J Allergy Clin Immunol. 2018;142:788–9.PubMedCrossRefGoogle Scholar
  82. Platts-Mills TA, Rakes G, Heymann PW. The relevance of allergen exposure to the development of asthma in childhood. J Allergy Clin Immunol. 2000;105:S503–8.PubMedCrossRefGoogle Scholar
  83. Platts-Mills TA, Heymann PW, Commins SP, Woodfolk JA. The discovery of IgE 50 years later. Ann Allergy Asthma Immunol. 2016;116:179–82.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Polukort SH, et al. IL-10 enhances IgE-mediated mast cell responses and is essential for the development of experimental food allergy in IL-10-deficient mice. J Immunol. 2016;196:4865–76.PubMedCrossRefGoogle Scholar
  85. Postma DS, Rabe KF. The asthma-COPD overlap syndrome. N Engl J Med. 2015;373:1241–9.PubMedCrossRefGoogle Scholar
  86. Postma DS, Bleecker ER, Amelung PJ, Holroyd KJ, Xu J, Panhuysen CI, et al. Genetic susceptibility to asthma--bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med. 1995;333:894–900.PubMedCrossRefGoogle Scholar
  87. Pulendran B, Artis D. New paradigms in type 2 immunity. Science. 2012;337:431–5.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Reynolds LA, Finlay BB. Early life factors that affect allergy development. Nat Rev Immunol. 2017;17:518–28.PubMedCrossRefGoogle Scholar
  89. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992;326:298–304.CrossRefGoogle Scholar
  90. Saluzzo S, Gorki AD, Rana BMJ, Martins R, Scanlon S, Starkl P, et al. First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep. 2017;18:1893–905.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Scanlon ST, McKenzie AN. The messenger between worlds: the regulation of innate and adaptive type-2 immunity by innate lymphoid cells. Clin Exp Allergy. 2015;45:9–20.PubMedCrossRefGoogle Scholar
  92. Shirakawa I, Deichmann KA, Izuhara I, Mao I, Adra CN, Hopkin JM. Atopy and asthma: genetic variants of IL-4 and IL-13 signalling. Immunol Today. 2000;21:60–4.PubMedCrossRefGoogle Scholar
  93. Stanworth DR. The discovery of IgE. Allergy. 1993;48:67–71.PubMedCrossRefGoogle Scholar
  94. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse north American populations. Nat Genet. 2011;43:887–92.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Trejo Bittar HE, Yousem SA, Wenzel SE. Pathobiology of severe asthma. Annu Rev Pathol. 2015;10:511–45.PubMedCrossRefGoogle Scholar
  96. Umetsu DT, McIntire JJ, Akbari O, Macaubas C, DeKruyff RH. Asthma: an epidemic of dysregulated immunity. Nat Immunol. 2002;3:715–20.PubMedCrossRefGoogle Scholar
  97. van Rijt L, von Richthofen H, van Ree R. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma. Semin Immunopathol. 2016;38:483–96.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Virchow JC Jr, Walker C, Hafner D, Kortsik C, Werner P, Matthys H, et al. T cells and cytokines in bronchoalveolar lavage fluid after segmental allergen provocation in atopic asthma. Am J Respir Crit Care Med. 1995;151:960–8.PubMedGoogle Scholar
  99. Walker C, Kaegi MK, Braun P, Blaser K. Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J Allergy Clin Immunol. 1991;88:935–42.PubMedCrossRefGoogle Scholar
  100. Wenzel SE. Emergence of biomolecular pathways to define novel asthma phenotypes. Type-2 immunity and beyond. Am J Respir Cell Mol Biol. 2016;55:1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wenzel SE, Balzar S, Ampleford E, Hawkins GA, Busse WW, Calhoun WJ, et al. IL4R alpha mutations are associated with asthma exacerbations and mast cell/IgE expression. Am J Respir Crit Care Med. 2007;175:570–6.PubMedCrossRefGoogle Scholar
  102. Wills-Karp M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol. 1999;17:255–81.PubMedCrossRefGoogle Scholar
  103. Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev. 2004;202:175–90.PubMedCrossRefGoogle Scholar
  104. Wills-Karp M, Ewart SL. Time to draw breath: asthma-susceptibility genes are identified. Nat Rev Genet. 2004;5:376–87.PubMedCrossRefGoogle Scholar
  105. Wills-Karp Marsha HGKK. Immunological mechanisms of allergic disorders. In: Paul WE, editor. Fundamental immunology. Philadelphia: Lippincott-Raven Publishers; 2003. p. 1439–79.Google Scholar
  106. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, et al. Interleukin-13: central mediator of allergic asthma. Science. 1998;282:2258–61.CrossRefGoogle Scholar
  107. Wills-Karp M, Santeliz J, Karp CL. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol. 2001;1:69–75.PubMedCrossRefGoogle Scholar
  108. Wright JL, Churg A. Cigarette smoke causes physiologic and morphologic changes of emphysema in the Guinea pig. Am Rev Respir Dis. 1990;142:1422–8.PubMedCrossRefGoogle Scholar
  109. Yiamouyiannis CA, Schramm CM, Puddington L, Stengel P, Baradaran-Hosseini E, Wolyniec WW, et al. Shifts in lung lymphocyte profiles correlate with the sequential development of acute allergic and chronic tolerant stages in a murine asthma model. Am J Pathol. 1999;154:1911–21.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zhang DH, Yang L, Cohn L, Parkyn L, Homer R, Ray P, et al. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity. 1999;11:473–82.PubMedCrossRefGoogle Scholar
  111. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (∗). Annu Rev Immunol. 2010;28:445–89.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldUSA

Personalised recommendations