The Mouse Hypothalamus

  • Hannsjörg SchröderEmail author
  • Natasha Moser
  • Stefan Huggenberger


Although there is a cerebrocortical representation of visceral activity (see Chap. 10), the hypothalamus with the pituitary gland is the main player in sustaining the milieu intérieur or interior milieu, as described in by Claude Bernard in the nineteenth century. This task is realized by the hierarchically highest control of physiological parameter like blood pressure, heart action, breathing, sweating (temperature regulation), gastrointestinal activity, and reproduction. By means of superordinate endocrine structures in the hypothalamus via the pituitary gland, the activity of peripheral endocrine glands like the thyroid gland, the suprarenal gland, ovaries, and testes is regulated via vascular feedback mechanisms. Other hormones secreted in the pituitary gland are involved in renal function (vasopressin), uterus contraction and postnatal binding behavior (oxytocin), growth (growth hormone), skin pigmentation (α-MSH), and mammary gland function (prolactin). As such the whole control of the visceral system is controlled by the hypothalamus either via neuronal connections or releasing/inhibiting factors and hormones.


Hypothalamus Mouse Pituitary gland Endocrine Mammillary region Arcuate nucleus Median eminence Subthalamic nucleus Paraventricular nucleus Supraoptic nucleus Suprachiasmatic nucleus Neuroendocrine Circadian 


  1. Abrahamson EE, Moore RY (2001a) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abrahamson EE, Moore RY (2001b) The posterior hypothalamic area: chemoarchitecture and afferent connections. Brain Res 889:1–22. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarez-Bolado G, Celio MR (2016) The ventrolateral hypothalamic area and the parvafox nucleus: role in the expression of (positive) emotions? J Comp Neurol 524:1616–1623. [Pvalb-Cre, Foxb1-Cre]CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alvarez-Bolado G, Zhou X et al (2000) Winged helix transcription factor Foxb1 is essential for access of mammillothalamic axons to the thalamus. Development 127:1029–1038. [Foxb1−/− on 129SvPas mice background]PubMedPubMedCentralGoogle Scholar
  5. Ammari R, Lopez C et al (2010) Subthalamic nucleus evokes similar long lasting glutamatergic excitations in pallidal, entopeduncular and nigral neurons in the basal ganglia slice. Neuroscience 166:808–818. [C57/BL6]CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bab I, Hajbi-Yonissi C, Gabet Y, Müller R (2007) Microtomographic atlas of the mouse skeleton. Springer, New York. [C57BL/6 SJL, C3H]CrossRefGoogle Scholar
  7. Baker BL, Gross DS (1978) Cytology and distribution of secretory cell types in the mouse hypophysis as demonstrated with immunocytochemistry. Am J Anat 153:193–215. [Swiss Webster mice]CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baronio D, Gonchoroski T et al (2014) Histaminergic system in brain disorders: lessons from the translational approach and future perspectives. Ann General Psychiatry 13:34CrossRefGoogle Scholar
  9. Becker H (1955) Hypophyse und Hypothalamus bei der weißen Maus. Zugleich ein Beitrag zur Standortbestimmung der Maus in der Säugetierreihe. Dtsch Z Nervenheilk 173:123–160. [white mouse]Google Scholar
  10. Behringer RR, Mathews LS et al (1988) Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev 2:453–461. [rGH-DT-A transgenic mice and non-expressing littermate]CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bondarenko E, Beig MI et al (2015) Blockade of the dorsomedial hypothalamus and the perifornical area inhibits respiratory responses to arousing and stressful stimuli. Am J Physiol Regul Integr Comp Physiol 308:R816–R822. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  12. Broadwell RD, Bleier R (1976) A cytoarchitectonic atlas of the mouse hypothalamus. J Comp Neurol 167:315–340. [albino mice]CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brooks LR, Chung WCJ et al (2010) Abnormal hypothalamic oxytocin system in fibroblast growth factor 8-deficient mice. Endocrinology 38:174–180. [FGF8 hypomorphic mice (129p2/OlaHsd∗ CD-1]Google Scholar
  14. Camper S, Suh H, Raetzman L, Douglas K, Cushman L, Nasonkin I, Burrows H, Gage P, Martin D (2002) Pituitary gland development. In: Rossant J, Tam PPL (eds) Mouse development. Elsevier: Amsterdam, pp 499–518Google Scholar
  15. Caruso V, Lagerström MC et al (2014) Synaptic changes induced by melanocortin signalling. Nat Rev Neurosci 15:98–110CrossRefPubMedPubMedCentralGoogle Scholar
  16. Çavdar S, Onat F et al (2001) The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat 198:463–472. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  17. Choi Y-H, Fujikawa T et al (2013) Revisiting the ventral medial nucleus of the hypo-thalamus: the roles of SF-1 neurons in energy homeostasis. Front Neurosci 7:71. [SF-1−/−]PubMedPubMedCentralGoogle Scholar
  18. Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphisms and projections to gonadotropin-releasing hormone neurons. Endocrinology 147:5817–5858. [C57BL/6J GhRH-GFP mice]CrossRefPubMedPubMedCentralGoogle Scholar
  19. Clemmons DR (2012) Metabolic actions of IGF-I in normal physiology and diabetes. Endocrinol Metab Clin North Am 41:425–443CrossRefPubMedPubMedCentralGoogle Scholar
  20. Crestani CC, Alves FHF et al (2013) Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr Neuropharmacol 11:141–159CrossRefPubMedPubMedCentralGoogle Scholar
  21. Crowley WR, Terry LC (1980) Biochemical mapping of somatostatinergic systems in rat brain: effects of periventricular hypothalamic and medial basal amygdaloid lesions on somatostatin-like immunoreactivity in discrete brain nuclei. Brain Res 200:283–291. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cui Z, Gerfen CR et al (2013) Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus. J Comp Neurol 521:1844–1866. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dimitrov EL, Yanagawa Y et al (2013) Forebrain GABAergic projections to locus coeruleus in mouse. J Comp Neurol 521:2373–2397. [C57Bl/6J, GAD67-GFP (Δneo) knock-in mice, VGAT-iCre/LSGFP mice]CrossRefPubMedPubMedCentralGoogle Scholar
  24. Draper S, Kirigiti M et al (2010) Differential gene expression between neuropeptide Y expressing neurons of the dorsomedial nucleus of the hypothalamus and the arcuate nucleus: microarray analysis study. Brain Res 1350:139–150. [NPY hrGFP mice on a C57BL6 background]CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eknoyan G (2010) A history of diabetes insipidus: paving the road to internal water balance. Am J Kidney Dis 56:1175–1183CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fauquier T, Rizzoti K et al (2008) SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A 105:2907–2912. [MF1 mice]CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fink G, Pfaff D, Levine J (eds) (2012) Handbook of neuroendocrinology. Elsevier, Saint LouisGoogle Scholar
  28. Fink-Jensen A, Møller M (1990) Direct projections from the anterior and tuberal regions of the lateral hypothalamus to the rostral part of the pineal complex of the rat. An anterograde neuron-tracing study by using Phaseolus vulgaris leucoagglutinin. Brain Res 522:337–341. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gautron L, Cravo RM et al (2013) Discrete melanocortin-sensitive neuroanatomical pathway linking the ventral premamillary nucleus to the paraventricular hypothalamus. Neuroscience 240:70–82. [C57BL/6, MC4-R-GFP]CrossRefPubMedPubMedCentralGoogle Scholar
  30. Goldberg LB, Aujla PK et al (2011) Persistent expression of activated Notch inhibits corticotrope and melanotrope differentiation and results in dysfunction of the HPA axis. Dev Biol 358:23–32. [mouse model with persistent expression of the activated Notch1 intracellular domain (NICD) in POMC-expressing cells]CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hagan CE, Bolon B, Keene CD (2007) Nervous system. In: Treuting PM, Dintzis SM (eds) Comparative anatomy and histology. A mouse and human atlas. Academic Press, Oxford, pp 381–384. [C57BL/6]Google Scholar
  32. Hahn JD, Swanson LW (2010) Distinct patterns of neural inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 64:14–103. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  33. Huggenberger S, Moser N, Schröder H et al (2019) Neuroanatomie des Menschen. SpringerGoogle Scholar
  34. Jennings JH, Rizzi G et al (2013) The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341:1517–1521. [Several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kaas JH (ed) (2009) Evolutionary neuroscience, Oxford, Academic PressGoogle Scholar
  36. Kaufman M, Nikitin AY, Sundberg JP (2010) Histologic basis of mouse endocrine system development: a comparative analysis. CRC Press, Boca RatonGoogle Scholar
  37. Kittel B, Ruehl-Fehlert C et al (2004) Revised guides for organ sampling and trimming in rats and mice – Part 2. Exp Toxicol Pathol 55:413–431. [mice, rats]CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lindberg D, Chen P et al (2013) Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J Comp Neurol 521:3167–3190. [Transgenic mice expressing Cre in SF1 neurons (SF1-Cre) (FVB-Tg(Nr5a1-cre)2Low/J transgenic reporter mice expressing Cre-regulated enhanced yellow fluorescent protein (EYFP) under the control of the ROSA26 promoter (R26-stop-EYFP) (B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J]CrossRefPubMedPubMedCentralGoogle Scholar
  39. Luiten PGM, terHorst GJ et al (1987) The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res 329:374–378. (1985) [rat]CrossRefGoogle Scholar
  40. Makarenko IG, Ugrymov MV et al (2002) Involvement of accessory neurosecretory nuclei in the formation of hypothalamohypophysial system during prenatal and postnatal development in rats. Russ J Dev Biol 33:37–42. [rat]CrossRefGoogle Scholar
  41. Martines EV, Reggiani PC et al (2011) Thymulin gene therapy prevents the histomorphometric changes induced by thymulin deficiency in the thyrotrope population of mice. Cells Tissues Organs 194:67–75. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mieda M, Okamoto H et al (2006) Manipulating the cellular circadian period of arginine vasopressin neurons alters the behavioral circadian period. Curr Biol 26:2535–2542. [Avp-CK1δ-/- mice]Google Scholar
  43. Miyata S, Hatton GI (2002) Activity-related, dynamic neuron-glial interactions in the hypothalamo-neurohypohysial system. Microsc Res Tech 56:143–157CrossRefPubMedPubMedCentralGoogle Scholar
  44. Miyata S, Takamatsu H et al (2001) Plasticity of neurohypohysial terminals with increased hormonal release during dehydration: ultrastructural and biochemical analyses. J Comp Neurol 343:413–427. [rat]CrossRefGoogle Scholar
  45. Morales-Delgado N, Merchan P et al (2011) Topography of somatostatin gene expression relative to molecular progenitor domains during ontogeny of the mouse hypothalamus. Front Neuroanat 5:10. [Swiss albino mice]CrossRefPubMedPubMedCentralGoogle Scholar
  46. Morales-Delgado N, Castro-Robles B et al (2014) Regionalized differentiation of CRH, TRH, and GHRH peptidergic neurons in the mouse hypothalamus. Brain Struct Funct 219:1083–1111. [Swiss albino mouse, Otp−/− C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  47. Morawietz G, Ruehl-Fehlert C et al (2004) Revised guides for organ sampling and trimming in rats and mice – Part 3. Exp Toxicol Pathol 55:433–449. [mice, rats]CrossRefPubMedPubMedCentralGoogle Scholar
  48. Morita S, Miyata S (2012) Different vascular permeability between the sensory and secretory circumventricular organs of the adult mouse brain. Cell Tissue Res 349:589–603. [C57BL/6J]CrossRefPubMedPubMedCentralGoogle Scholar
  49. Morton GJ, Schwartz MW (2011) Leptin and the CNS control of glucose metabolism. Physiol Rev 91:389–411CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nagaishi VS, Cardinali LI et al (2014) Possible crosstalk between leptin and prolactin during pregnancy. Neuroscience 259:71–83. [LepR-reporter mouse to visualize LepR-expressing cells with the tdTomato fluorescent protein]CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nakamura S, Takemura M et al (1993) Loss of large neurons and occurrence of neurofibrillary tangles in the tuberomammillary nucleus of patients with Alzheimer’s disease. Neurosci Lett 151:196–199. [man]CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pardo-Bellver C, Cádiz-Moretti B et al (2012) Differential efferent projections of the anterior, posteroventral, and posterolateral subdivisions of the medial amygdala in mice. Front Neuroanat 6:33. [C57BL/J6, CD1]CrossRefPubMedPubMedCentralGoogle Scholar
  53. Paxinos G, Franklin K (2012) Paxinos and Franklins the mouse brain in stereotaxic coordinates, 4th edn. Elsevier, AmsterdamGoogle Scholar
  54. Paxinos G, Watson C (2010) BrainNavigator. Interactive atlas and 3D brain software for research, structure analysis, and education. Elsevier, AmsterdamGoogle Scholar
  55. Petrof I, Sherman S (2009) Synaptic properties of the mammillary and cortical afferents to the anterodorsal thalamic nucleus in the mouse. J Neurosci 29:7815–7819. [BALB/c]CrossRefPubMedPubMedCentralGoogle Scholar
  56. Puelles L (2009) Forebrain development: prosomere model. In: Lemke G (ed) Developmental neurobiology. Academic Press, London, pp 315–319Google Scholar
  57. Puelles L (2013) Plan of the developing vertebrate nervous system. In: Rubenstein JLR, Rakic P (eds) Comprehensive developmental neuroscience: patterning and cell type specification in the developing CNS and PNS, vol 1. Elsevier, Amsterdam, pp 187–209CrossRefGoogle Scholar
  58. Ramon y Cajal S (2002) Histologie du système nerveux de l’homme et des vertébrés/texture of the nervous system of man and the vertebrates, vol 3. Springer, translated and edited by Pedro and Tauba PasikGoogle Scholar
  59. Robbe D, Alonso G et al (2001) Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci 21:109–116. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rood BD, Stott RT et al (2012) Site or origin of and sex differences in the vasopressin innervation of the mouse (Mus musculus) brain. J Comp Neurol 521:2321–2358. [mouse]CrossRefGoogle Scholar
  61. Rossant J, Tam PPL (eds) (2002) Mouse development. Patterning, morphogenesis and organogenesis. Academic Press, San DiegoGoogle Scholar
  62. Rozov SV, Zant JC et al (2014) Periodic properties of the histaminergic system of the mouse brain. Eur J Neurosci 39:218–228. [C57BL/6J, CBA/J mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ruehl-Fehlert C, Kittel B et al (2003) Revised guides for organ sampling and trimming in rats and mice – Part 1. Exp Toxicol Pathol 55:91–106. [mice, rats]CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sakai K (2014) Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice. Neuroscience 260:249–264. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sakai K, Takahashi K et al (2010) Sleep-waking discharge of ventral tuberomammillary neurons in wild-type and histidine decarboxylase knock-out mice. Front Behav Neurosci 4:53. [C57BL/6, Histidine decarboxylase knock-out mice]CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sano H, Yokoi M (2007) Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons. J Neurosci 27:6948–6955. [Several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar
  67. Schuff KG, Hentges ST et al (2002) Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and –independent mechanisms. J Clin Invest 110:973–981. [Drd2−/− and Prlr−/−]CrossRefPubMedPubMedCentralGoogle Scholar
  68. Schwartz MD, Nunez AA et al (2004) Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neuroscience 127:13–23. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shabel SJ, Proulx CD (2014) Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345:1494–1498. [Several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar
  70. Shimogori T, Lee DA et al (2010) A genomic atlas of mouse hypothalamic development. Nat Neurosci 13:757–776. [C57Bl/6 and CD-1]CrossRefGoogle Scholar
  71. Sturrock RR (1991) Stability of neuron number in the subthalamic and entopeduncular nuclei of the aging mouse brain. J Anat 179:67–73. [ASH/TO mice]PubMedPubMedCentralGoogle Scholar
  72. Tosini G, Owino S et al (2014) Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. BioEssays 36:778–787CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wehr R, Mansouri A et al (1997) Fkh5-deficient mice show dysgenesis in the caudal midbrain and hypothalamic mammillary body. Development 124:4447–4456. [Fkh5−/− mice]PubMedPubMedCentralGoogle Scholar
  74. Weiner IB, Craighead WE (2010) The Corsini encyclopedia of psychology. Wiley, HobokenCrossRefGoogle Scholar
  75. Yamazaki F, Møller M et al (2015) The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus. Brain Struct Funct 220:1497–1509. [Lhx9−/− on C57BL/6 background, rat]CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zeiss CJ (2005) Neuroanatomical phenotyping in the mouse: the dopaminergic system. Vet Pathol 42:753–773. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zeki S (2007) The neurobiology of love. FEBS Lett 581:2575–2579. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhu X, Gleiberman AS et al (2007) Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 87:933–963. [mouse]CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hannsjörg Schröder
    • 1
    Email author
  • Natasha Moser
    • 1
  • Stefan Huggenberger
    • 2
  1. 1.Department II of AnatomyUniversity Hospital CologneCologneGermany
  2. 2.Institute of Anatomy and Clinical MorphologyUniversity of Witten/HerdeckeWittenGermany

Personalised recommendations