Advertisement

The Mouse Brainstem (Truncus encephali)

  • Hannsjörg SchröderEmail author
  • Natasha Moser
  • Stefan Huggenberger
Chapter
  • 80 Downloads

Abstract

The mammalian brainstem is composed in caudocranial order of the medulla oblongata, the pons, and the midbrain (mesencephalon). The main difference to the spinal cord (see ► Chap.  5, nervous supply of trunk and limbs) is the endowment of the brainstem with nuclei, fiber tracts, and nerves for the innervation of the head-specific organs, like the eyes, the ears, the organ of equilibrium, the nose, the foregut, and the specific muscles of the head and face region. The nerves providing eye movement (oculomotor, trochlear, and abducens), the face (trigeminal and facial), the inner ear (vestibulocochlear), and the foregut (trigeminal, facial, glossopharyngeal, vagal and hypoglossal) originate (motor, efferent innervation) or end (sensory, afferent innervation) in specific nuclei inside the brainstem. Following a historical classification, there are nine “real” cranial nerves, comparable to the spinal nerves of the spinal cord, and two cranial nerves which in effect are bulges of the telencephalon (olfactory nerve, olfaction; see ► Chap.  14) and the diencephalon (optic nerve, vision; see ► Chap.  8). The accessory nerve, innervating some of the neck muscles, is included additionally into the cranial nerves although its neurons of origin are located in the cervical spinal cord.

In addition to the “real cranial nerve” nuclei, there are precerebellar nuclei targeting the cerebellum (► Chap.  7), premotor nuclei like the red nucleus, nuclei which provide the aminergic innervation of the whole brain, relay nuclei for the ascending sensory tracts (somatosensory, auditory), and those of the reticular formation. Finally, all the ascending and descending fibers tracts we have learned about in ► Chap.  5 are traversing the brainstem on their way to the cerebellum, the vestibular nuclei, the somatosensory nuclei of the thalamus (► Chap.  8), and those which descend to their motor targets in the brainstem and the spinal cord.

Keywords

Brainstem Medulla oblongata Pons Mesencephalon Midbrain Cranial nerves branchiogenic innervation Substantia nigra 

References

  1. Aoyagi H, Iwasaki SI et al (2015) Three-dimensional observation of mouse tongue muscles using micro-computed tomography. Odontology 103:1–8. [Slc:ddY]CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashwell KW (1982) The adult mouse facial nerve nucleus: morphology and musculotopic organization. J Anat 135:531–538. [Balb/c]PubMedPubMedCentralGoogle Scholar
  3. Ayuso-Mateos JL, Vázquez-Barquero JL et al (2001) Depressive disorders in Europe: prevalence figures from the ODIN study. Br J Psychiatry 179:308–316CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bab I, Hajbi-Yonissi C, Gabet Y, Müller R (2007) Micro-tomographic atlas of the mouse skeleton. Springer, New York. [C57BL/6]Google Scholar
  5. Bagnall MW, Stevens RJ et al (2007) Transgenic mouse lines subdivide medial vestibular nucleus into discrete neurochemically distinct populations. J Neurosci 27:2318–2330. [Several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar
  6. Benninger B, McNeil J (2010) Transitional nerve: a new and original classification of a peripheral nerve supported by the nature of the accessory nerve (CN XI). Neurol Res Int 2010:476018CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beraneck M, Bojados M et al (2012) Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing. PLoS One 7:e40414. [C57BL/6J]CrossRefPubMedPubMedCentralGoogle Scholar
  8. Biazoli CE, Goto M et al (2006) The supragenual nucleus: a putative relay station for ascending vestibular signs to head direction cells. Brain Res 1094:138–148. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boudes M, Uvin P et al (2013) Bladder dysfunction in a transgenic mouse model of multiple system atrophy. Mov Disord 28:347–355. [PLP-hαSyn transgenic mice, C57Bl/6]CrossRefPubMedPubMedCentralGoogle Scholar
  10. Broms J, Antolin-Fontes B et al (2014) Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates. J Comp Neurol 523:359–380. [Gpr151−/− mice]CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bruce LL, Kinsley J et al (1997) The development of vestibulocochlear efferents and cochlear afferents in mice. Int J Dev Neurosci 15:671–692. [CF1, BALB/c, C3H]CrossRefGoogle Scholar
  12. Bruinstroop E, Cano G et al (2012) Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats. J Comp Neurol 520:1985–2001. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  13. Burgess RW, Jucius TJ et al (2006) Motor axon guidance of the mammalian trochlear and phrenic nerves: dependence on the netrin receptor Unc5c and modifier loci. J Neurosci 26:5756–5766. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  14. Calka J, Zalecki M et al (2013) Re-examination of the topographical localization of facial nucleus in the pig. Anat Embryol 211:197–201. [pig]CrossRefGoogle Scholar
  15. Campbell JP, Henson MM (1988) Olivocochlear neurons in the brainstem of the mouse. Hear Res 135:271–274. [white laboratory mice (ICR)]CrossRefGoogle Scholar
  16. Campos CA, Bowen AJ et al (2018) Encoding of danger by parabrachial CGRP neurons. Nature 555:617–622. [Heterozygous CalcaCre/+ mice and OxtrCre/+ mice (C57Bl/6 background)]CrossRefPubMedPubMedCentralGoogle Scholar
  17. Carrive P, Paxinos G (1994) The supraoculomotor cap: a region revealed by NADPH diaphorase histochemistry. Neuroreport 5:2257–2260. [rat, rabbit, cat, monkey, man]CrossRefGoogle Scholar
  18. Celio MR, Babalian A et al (2013) Efferent connections of the parvalbumin-positive (PV1) nucleus in the lateral hypothalamus of rodents. J Comp Neurol 521:3133–3353. [PV-Cre mice, rat]CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chaumont J, Guyon N et al (2013) Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proc Natl Acad Sci U S A 110:16223–16228. [L7-ChR2-eYFP Mice]CrossRefGoogle Scholar
  20. Chen X, Gabitto M et al (2011) A gustotopic map of taste qualities in the mammalian brain. Science 333:1262–1126. [mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  21. Colussi-Mas J, Geisle S et al (2007) Activation of afferents to the ventral tegmental area in response to acute amphetamine: a double labeling study. Eur J Neurosci 26:1011–1025. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cordes SP (2001) Molecular genetics of cranial nerve development in the mouse. Nat Rev Neurosci 2:611–623. [mouse]CrossRefGoogle Scholar
  23. Costa C, Harding B (2001) Neuronal migration defects in the Dreher (Lmx1a) mutant mouse: role of disorders of the glial limiting membrane. Cereb Cortex 11:498–505. [dreher mouse]CrossRefGoogle Scholar
  24. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62:1–54. [rat]Google Scholar
  25. Deneris ES (2011) Molecular genetics of mouse serotonin neurons across the lifespan. Neuroscience 197:17–27. [Several transgenic lines]CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dergacheva O, Wang X et al (2010) The lateral paragigantocellular nucleus modulates parasympathetic cardiac neurons: a mechanism for rapid eye movement sleep-dependent changes in heart rate. J Neurophysiol 104:685–694. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dhungel N, Eleuteri S et al (2015) Parkinson’s disease genes VPS35 and EIF4G1 interact genetically and converge on α-synuclein. Neuron 85:76–87. [Several transgenic mouse lines]CrossRefGoogle Scholar
  28. Diehl AG, Zareparsi S et al (2006) Extraocular muscle morphogenesis and gene expression are regulated by Pitx2 gene dose. Invest Ophthalmol Vis Sci 47:1785–1793. [Panel of mice with Pitx2 gene dose ranging from wild-type (+/+) to none (−/−)]CrossRefGoogle Scholar
  29. Dimitrov EL, Yanagawa Y et al (2013) Forebrain GABAergic projections to locus caeruleus in mouse. J Comp Neurol 521:2373–2397. [C57BL/6J, GAD67-GFP, VGAT-iCre/LSGFP]CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dräger UC, Hubel DH (1975) Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J Neurophysiol 38(3):690–713. [C57BL/6J]CrossRefGoogle Scholar
  31. Edinger L (1885) Über den Verlauf der centralen Hirnnervenbahnen mit Demonstrationen von Präparaten. Arch Psychiatr Nervenkr 16:858–859. [man]Google Scholar
  32. Edwards IJ, Deuchars SA et al (2009) The intermedius nucleus of the medulla: a potential site for the integration of cervical information and the generation of autonomic responses. J Chem Neuroanat 38:166–175. [VGluT2-GFP mice]CrossRefGoogle Scholar
  33. Erzurumlu RS, Kind PC (2001) Neural activity: sculptor of barrels in the neocortex. Trends Neurosci 24:589–595. [mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fu Y, Tvrdik P et al (2011) Precerebellar cell groups in the hindbrain of the mouse defined by retrograde tracing and correlated with cumulative Wnt1-cre genetic labeling. Cerebellum 10:570–584. [C57BL/6]CrossRefGoogle Scholar
  35. Fu YH, Watson C (2012) The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive. Brain Behav Evol 79:191–204. [C57BL/6J]CrossRefGoogle Scholar
  36. Fujiyama T, Yamada M et al (2009) Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development 136:2049–2058. [Ptf1acre, Rosa26R (R26R) and Gad67-GFP (Δneo) mouse lines]CrossRefGoogle Scholar
  37. Galliano E, Baratella M et al (2013) Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse. Front Neural Circuits 7:59. [C57BL/6]CrossRefGoogle Scholar
  38. Ganchrow D, Ganchrow JR et al (2013) The nucleus of the solitary tract in the C57BL/6J mouse: subnuclear parcellation, chorda tympani nerve projections and brainstem connections. J Comp Neurol 522(7):1565–1596. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gilbert SF (2000) Developmental biology, 6th edn. Sinauer Associates, SunderlandGoogle Scholar
  40. Gilthorpe JD, Papantoniou E-K et al (2002) The migration of cerebellar rhombic lip derivatives. Development 129:4719–4728. [Chick]Google Scholar
  41. Glattfelder KJ, Ng LL et al (2008) Area Postrema (AP). precedings.nature.com
  42. Gray PA (2013) Transcription factors define the neuroanatomical organization of the medullary reticular formation. Front Neuroanat 7:7. [Mixed CD1 / C57B6 background]CrossRefPubMedPubMedCentralGoogle Scholar
  43. Graziano A, Liu XB et al (2008) Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse. J Comp Neurol 507:1258–1276. [Swiss-Webster mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  44. Häfner H (ed) (2008) Ein König wird beseitigt, Ludwig II. von Bayern. C.H. Beck, MünchenGoogle Scholar
  45. Han W, Tellez LA et al (2017) Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168:311–324. [VGat ires Cre (Slc32a1tm2(cre)Lowl/J, VGlut2-ires-Cre (Slc17a6tm2(cre)Lowl/J,VGat-floxed (Slc32a1tm1Lowl/J, Chat-ires-Cre 3 RFGT = Chat-Cre (B6;129S6-Chattm2(cre)Lowl/J, 3 RFGT (B6;129P2-Gt(ROSA)26Sortm1(CAG-RABVgp4,-TVA)Arenk/J, C57BL/6J]CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hökfelt T, Mårtensson R et al (1984) Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam. [rat]Google Scholar
  47. Hof PR, Young WG et al (2000) comparative cytoarchitectonic atlas of the C57BL/6 and 129/Sv mouse brains. Elsevier, Amsterdam. [C57BL/6 and 129/Sv]Google Scholar
  48. Hong Q, Ke B et al (2014) Cuneiform nucleus stimulation as adjunct treatment for intractable epilepsy: a virally mediated transsynaptic tracing study in spinally transected transgenic mice. Epilepsy Behav 33:135–137. [melanocortin-4 receptor-green fluorescence protein (MC4R-GFP) knock-in mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  49. Horn CC, Kimball BA et al (2013) Why can’t rodentia vomit? A comparative behavioral, anatomical, and physiological study. PLoS One 8:e60537CrossRefPubMedPubMedCentralGoogle Scholar
  50. Huggenberger S, Moser N, Schröder H, Cozzi B, Granato A, Merigh A. (2019) Neuroanatomie des Menschen. Heidelberg: Springer. 210pp. ISBN: 978-3-662-56460-8.Google Scholar
  51. Ichikawa H, Qiu F et al (2005) Brn-3a is required for the generation of proprioceptors in the mesencephalic trigeminal tract nucleus. Brain Res 1053:203–206. [White laboratory mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  52. Inoue M (1984) Structure and innervation of mouse parotid gland. J Juzen Med Soc 93:534–549. [Mus Wagneri var. albula]Google Scholar
  53. Irle E, Sarter M et al (1984) Afferents to the ventral tegmental nucleus of Gudden in the mouse, rat, and cat. J Comp Neurol 228:509–541. [mouse, rat, cat]CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ishii T, Furuoka H et al (2005) The mesencephalic trigeminal sensory nucleus is involved in the control of feeding and exploratory behavior in mice. Brain Res 1048:80–86. [ddY mice]CrossRefPubMedPubMedCentralGoogle Scholar
  55. Iwahori N (1986) A Golgi study on the dorsal nucleus of the lateral lemniscus in the mouse. Neurosci Res 3:196–212. [Albino mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  56. Iwahori N, Nakamura K et al (1993a) Terminal patterns of the tegmental afferents in the interpeduncular nucleus: a Golgi study in the mouse. Anat Embryol 187:523–528. [albino mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  57. Iwahori N, Nakamura K et al (1993b) Terminal patterns of the fasciculus retroflexus in the interpeduncular nucleus of the mouse: a Golgi study. Anat Embryol 187:523–528. [Albino mice]CrossRefPubMedPubMedCentralGoogle Scholar
  58. Iwaki T, Yamashita H, Hayakawa T (2001) A color atlas of sectional anatomy of the mouse. Adthree Publishing, Tokyo. [ddY and ICR]Google Scholar
  59. Kaufman MH, Bard JBL (1999) The anatomical basis of mouse development. Academic Press, San DiegoGoogle Scholar
  60. Kobayashi Y, Sano Y et al (2013) Genetic dissection of medial habenula–interpeduncular nucleus pathway function in mice. Front Behav Neurosci 7:17. [Several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kolkman KE, Moghadam SH et al (2011) Intrinsic physiology of identified neurons in the prepositus hypoglossi and the Medial vestibular nuclei. J Vestib Res 21:33–47. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kovac W, Denk H (1968) Der Hirnstamm der Maus. Topographie, Cytoarchitektonik und Cytologie. Springer, Wien – New York. [White laboratory mouse]Google Scholar
  63. Kozicz T, Bittencourt JC et al (2012) The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol 519:1413–1434. [man, monkey, cat, pigeon]CrossRefGoogle Scholar
  64. Kow LM, Commons KG et al (2002) Potentiation of the excitatory action of NMDA in ventrolateral periaqueductal gray by the μ-opioid receptor agonist, DAMGO. Brain Res 935:87–102. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  65. Leergard TB, Bjaalie JG (2007) Topography of the complete corticopontine projection: from experiments to principal maps. Front Neurosci 1:211–223. [rat]CrossRefGoogle Scholar
  66. Leichnetz GR (1982) The medial accessory nucleus of Bechterew: a cell group within the anatomical limits of the rostral oculomotor complex receives a direct prefrontal projection in the monkey. J Comp Neurol 210:147–151. [monkey]CrossRefPubMedPubMedCentralGoogle Scholar
  67. Li JL, Wu SX et al (2005) Efferent and afferent connections of GABAergic neurons in the supratrigeminal and the intertrigeminal regions. An immunohistochemical tract-tracing study in the GAD67-GFP knock-in mouse. Neurosci Res 51:81–91. [GAD67-GFP mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  68. Li L, Huang C et al (2010a) Structural remodeling of vagal afferent innervation of aortic arch and Nucleus ambiguus (NA) projections to cardiac ganglia in a transgenic mouse model of type 1 ciabetes (OVE26). J Comp Neurol 518:2771–2793. [FVB mouse]Google Scholar
  69. Li L, Huang C et al (2010b) Small conductance Ca2+-activated K+ channels regulate firing properties and excitability in parasympathetic cardiac motoneurons in the nucleus ambiguus. AJP Cell Physiology 299:C1285–1298 . [FVB mouse]Google Scholar
  70. Liang H, Bácskai T et al (2014) Projections from the lateral vestibular nucleus to the spinal cord in the mouse. Brain Struct Funct 219:805–815. [C57/BL6]CrossRefGoogle Scholar
  71. Loewi O (1921) Über humorale Erregbarkeit der Herznervenwirkung. Pflügers Arch Ges Physiol 189:239–242. [frog]CrossRefGoogle Scholar
  72. Loewi O, Navratil E (1926) Über humorale Übertragbarkeit der Herznervenwirkung. X. Mitteilung: Über das Schicksal des Vagusstoffs. Pflügers Arch Ges Physiol 214:678–688. [frog]CrossRefGoogle Scholar
  73. Ma R, Cui H et al (2013) Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus. J Neurophysiol 108:2029–2043. [cat]CrossRefGoogle Scholar
  74. Malmierca MS, Merchán MA et al (2004) Auditory system. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, Amsterdam. [rat]Google Scholar
  75. Martin EM, Devidze N et al (2011) Molecular and neuroanatomical characterization of single neurons in the mouse medullary Gigantocellular reticular nucleus. J Comp Neurol 519:2574–2593. [Swiss Webster, Tg(Gjd2-EGFP)16Gsat]CrossRefPubMedPubMedCentralGoogle Scholar
  76. May PJ, Reiner AJ et al (2008) Comparison of the distributions of urocortin containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. J Comp Neurol 507:1300–1316. [cat, monkey]CrossRefPubMedPubMedCentralGoogle Scholar
  77. McKay IJ, Lewis J et al (1997) Organization and development of facial motor neurons in the Kreisler mutant mouse. Eur J Neurosci 9:1499–1506. [Kreisler mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  78. McKinley MJ, McAllen RM et al (2003) The sensory circumventricular organs of the mammalian brain. Adv Anat Embryol Cell Biol 172:1–122CrossRefGoogle Scholar
  79. Meka DP, Müller-Rischart AK et al (2015) Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration. J Clin Invest 125:1873–1885. [RET floxed, Dat-Cre BAC, parkin KO, TH-GFP mice]CrossRefPubMedPubMedCentralGoogle Scholar
  80. Mesulam MM, Mufson EJ et al (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  81. Millonig JH, Millen KJ et al (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769. [mouse Dreher]CrossRefGoogle Scholar
  82. Møller AR (2006) History of cochlear implants and auditory brainstem implants. Adv Otorhinolaryngol 64:1–10PubMedGoogle Scholar
  83. Moore LA, Trussel LO (2017) Co-release of inhibitory neurotransmitters in the mouse auditory midbrain. J Neurosci 37:9453–9464. [Heterozygous GlyT2-Cre/tdTomato: GlyT2-EGFP, GlyT2-Cre;ChR2, C57BL/6 mice]CrossRefPubMedPubMedCentralGoogle Scholar
  84. Morcinek K, Köhler C et al (2013) Pattern of tau hyperphosphorylation and neurotransmitter markers in the brainstem of senescent tau filament forming transgenic mice. Brain Res 1497:73–84. [C57BL/6]CrossRefGoogle Scholar
  85. Morrison JFB (2008) The discovery of the pontine micturition centre by F. J. F. Barrington. Exp Physiol 93:742–745CrossRefGoogle Scholar
  86. Morsli H, Choo D et al (1998) Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18:3327–3335. [CD-1 mice]CrossRefPubMedPubMedCentralGoogle Scholar
  87. Murray LM, Gillingwater TH et al (2010) Using mouse cranial muscles to investigate neuromuscular pathology in vivo. Neuromuscul Disord 20:740–743. [mouse]CrossRefGoogle Scholar
  88. Muzerelle A, Scotto-Lomassese S et al (2016) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem. Brain Struct Funct 221:535–561. [(SERT, Slc6a4) Cre mouse line , Pet1Cre (B6.Cg-Tg(Fev-cre)1Esd/J) crossed to the RCE-lox-stop-GFP mouse line on C57-Bl6 background; C57-Bl6-J (sic) mice]CrossRefGoogle Scholar
  89. Nakano T, Muto H (1985) Anatomical observations in the pharynx of the mouse with special reference to the nasopharyngeal hiatus (Wood Jones). Acta Anat 121:147–152. [SMA mouse]CrossRefGoogle Scholar
  90. Nashold BS Jr, Wilson WP et al (1969) Sensations evoked by stimulation in the midbrain of man. J Neurosurg 30:14–24. [man]CrossRefGoogle Scholar
  91. Neuhaus JF, Baris OR et al (2013) Catecholamine metabolism drives generation of mitochondrial DNA deletions in dopaminergic neurons. Brain 137:354–365. [C57BL/6]CrossRefGoogle Scholar
  92. Ohm TG, Braak H (1988) The pigmented subpeduncular nucleus: a neuromelanin-containing nucleus in the human pontine tegmentum. Acta Neuropathol 77:26–32. [man]CrossRefGoogle Scholar
  93. Ollo C, Schwartz IR (1979) The superior olivary complex in C57BL/6 mice. Am J Anat 155:349–374. [C57BL/6]CrossRefGoogle Scholar
  94. Olson MOJ, Dundr M (2015) Nucleolus: structure and function. In: eLS. Wiley, ChichesterGoogle Scholar
  95. Olyntho-Tokunago HH, Pinto ML et al (2008) Projections from the anterior interposed nucleus to the red nucleus diminish with age in the mouse. Anat Histol Embryol 37:438–441. [C57BL/10]CrossRefGoogle Scholar
  96. Osterberg VR, Spinelli KJ et al (2015) Progressive aggregation of alpha-synuclein and selective degeneration of inclusion-bearing neurons in a mouse model of parkinsonism. Cell Rep 10:1252–1260. [Syn-GFP x BDF1 mice]CrossRefPubMedPubMedCentralGoogle Scholar
  97. Paxinos W, Franklin KBJ (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego. [C57BL/6]Google Scholar
  98. Paxinos G, Watson C (2010) BrainNavigator. Interactive atlas and 3D brain software for research, structure analysis, and education. Elsevier, AmsterdamGoogle Scholar
  99. Patrylo PR, Sekiguchi M et al (1990) Heterozygote effects in dreher mice. J Neurogenet 6:173–181CrossRefGoogle Scholar
  100. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego.Google Scholar
  101. Pelaez NM, Schreihofer AM et al (2002) Decompensated hemorrhage activates serotonergic neurons in the subependymal parapyramidal region of the rat medulla. Am J Physiol Regul Integr Comp Physiol 283:R688–R697. [rat]CrossRefGoogle Scholar
  102. Pinto ML, Olyntho-Tokunaga HH et al (2007) The interstitial system of the trigeminal spinal tract projects to the red nucleus in mice. Somatosens Mot Res 24:221–225. [C57BL10]CrossRefGoogle Scholar
  103. Puelles L (2009) Forebrain development: prosomere model. In: Lemke G (ed) Developmental neurobiology. Academic Press, pp 315–319Google Scholar
  104. Rohrschneider I, Schink I et al (1972) Der Feinbau der Area postrema der Maus. Z Zellforsch 123:251–276. [white mouse]CrossRefGoogle Scholar
  105. Ruberte J, Carretero A, Navarro M (2017) Morphological mouse phenotyping. Academic Press, San DiegoGoogle Scholar
  106. Ruggiero DA, Underwood MD et al (2000) The human nucleus of the solitary tract: visceral pathways revealed with an “in vitro” postmortem tracing method. J Auton Nerv Syst 79:181–190. [man]CrossRefGoogle Scholar
  107. Safieddine S, El-Amraoui A (2012) The auditory hair cell ribbon synapse: from assembly to function. Ann Rev Neurosci 35:509–528CrossRefGoogle Scholar
  108. Sang Q, Goyal RK (2000) Lower esophageal sphincter relaxation and activation of medullary neurons by subdiaphragmatic vagal stimulation in the mouse. Gastroenterology 119:1600–1609. [Swiss Webster mouse]CrossRefGoogle Scholar
  109. Scalia F, Rasweiler JJ 4th et al (2014) Retinal projections in the short-tailed fruit bat, Carollia perspicillata, as studied using the axonal transport of cholera toxin B subunit: comparison with mouse. J Comp Neurol 523(12):1756–1791. [Carollia perspicillata, C57BL6]CrossRefGoogle Scholar
  110. Sekirnjak C, du Lac S (2006) Physiological and anatomical properties of mouse medial vestibular nucleus neurons projecting to the oculomotor nucleus. J Neurophysiol 95:3012–3023. [mixed C57BL/6 and BALB/c background]CrossRefGoogle Scholar
  111. Shang C, Liu Z et al (2015) A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348:1472–1477. [Several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar
  112. Singer W, Panford-Walsh R et al (2014) The function of BDNF in the adult auditory system. Neuropharmacology 76:719–728CrossRefPubMedPubMedCentralGoogle Scholar
  113. Sirleix C, Gervasino D et al (2013) Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLoS One 7(1):e28724. [rat]CrossRefGoogle Scholar
  114. Smith JC, Abdala APL et al (2009) Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc B 364:2577–2587CrossRefGoogle Scholar
  115. Smits SM, von Oerthel L et al (2013) Molecular marker differences relate to developmental position and subsets of mesodiencephalic dopaminergic neurons. PLoS One 8:e76037. [Pregnant C57Bl/6-Jico mice]CrossRefPubMedPubMedCentralGoogle Scholar
  116. Sprenger C, Eichler IC et al (2018) Altered signaling in the descending pain modulatory system after short-term infusion of the μ-opioid agonist remifentanil. J Neurosci 38:2454–2470. [man]CrossRefPubMedPubMedCentralGoogle Scholar
  117. Stornetta RL, Macon CJ et al (2013) Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Struct Funct 218:455–475. [ChAT-Cre, DBH-Cre]CrossRefPubMedPubMedCentralGoogle Scholar
  118. Streefland C, Jansen K (1999) Intramedullary projections of the rostral nucleus of the solitary tract in the rat: gustatory influences of autonomic output. Chem Senses 24:655–664. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  119. Sturrock RR (1990) A comparison of age-related changes in neuron number in the dorsal motor nucleus of the vagus and the nucleus ambiguus of the mouse. J Anat 173:169–176. [ASH/TO mice]PubMedPubMedCentralGoogle Scholar
  120. Takasaki A, Hui M et al (2010) Is the periaqueductal gray an essential relay center for the micturition reflex pathway in the cat? Brain Res 1317:108–115. [cat]CrossRefPubMedPubMedCentralGoogle Scholar
  121. Tanii H, Zang X-P et al (2000) Involvement of GABA neurons in allylnitrile-induced dyskinesia. Brain Res 887:454–459. [ddy mouse]CrossRefGoogle Scholar
  122. Terashima T, Kishimoto Y et al (1994) Musculotopic organization in the motor trigeminal nucleus of the reeler mutant mouse. Brain Res 666:31–42. [C57BL/6 background]CrossRefGoogle Scholar
  123. Tokita K, Inoue T et al (2009) Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 161:475–488. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  124. Tokita K, Inoue T et al (2010) Subnuclear organization of parabrachial efferents to the thalamus, amygdala and lateral hypothalamus in C57BL/6J mice: a quantitative retrograde double labeling study. Neuroscience 171:351–365. [C57BL/6J]CrossRefPubMedPubMedCentralGoogle Scholar
  125. Totterdell S, Meredith GE (2005) Localization of alpha-synuclein to identified fibers and synapses in the normal mouse brain. Neuroscience 135:907–913CrossRefGoogle Scholar
  126. Triarhou LC, Norton J et al (1988) Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res 70:256–265CrossRefGoogle Scholar
  127. Tsutsumi T, Houtani T et al (2007) Vesicular acetylcholine transporter-immunoreactive axon terminals enriched in the pontine nuclei of the mouse. Neuroscience 146:1869–1878. [ddY mouse]CrossRefGoogle Scholar
  128. Uziel D, Mühlfriedel S et al (2002) Miswiring of limbic thalamocortical projections in the absence of ephrin-A5. J Neurosci 22:9352–9357. Ephrin A5 k.o. mice, wild type miceCrossRefPubMedPubMedCentralGoogle Scholar
  129. Valverde F (1973) The neuropil in superficial layers of the superior colliculus of the mouse. A correlated Golgi and electron microscopic study. Z Anat Entwickl-Gesch 142:117–147. [C57BL/6J]CrossRefGoogle Scholar
  130. Vanderhorst VG (2005) Nucleus retroambiguus-spinal pathway in the mouse: localization, gender differences, and effects of estrogen treatment. J Comp Neurol 488:180–200. [C57BL/6 / C57BL/6J, CD-1]CrossRefGoogle Scholar
  131. VanderHorst VG, Ulfhake B (2006) The organization of the brainstem and spinal cord of the mouse: relationships between monoaminergic, cholinergic, and spinal projection systems. J Chem Neuroanat 31:2–36. [C57BL/6]CrossRefGoogle Scholar
  132. Watson C, Paxinos G, Kayalioglu G (eds) (2008) The spinal cord, 1st edn. Academic Press, San Diego. [C57BL/6]Google Scholar
  133. Watson C, Trvdik P (2018) Spinal accessory motor neurons in the mouse: a special type of branchial motor neuron? Anat Rec (Hoboken).  https://doi.org/10.1002/ar.23822. [Epub ahead of print] [Phox2b-Cre mice]
  134. Wenthur CJ, Bennett MR et al (2014) Classics in chemical neuroscience: fluoxetine (Prozac). ACS Chem Nerosci 5:14–23CrossRefGoogle Scholar
  135. Westphal C (1887) Über einen Fall von chronischer progressiver Lähmung der Augenmuskeln (Ophthalmoplegia externa) nebst Beschreibung von Ganglienzellengruppen im Bereiche des Oculomotoriuskerns. Arch Psychiat Nervenheilk 98:846–871. [man]CrossRefGoogle Scholar
  136. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329. [rat, mouse]CrossRefGoogle Scholar
  137. Willner P, Muscat R et al (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  138. Woolsey TA, Welker C et al (1975) Comparative anatomical studies of the SmI face cortex with special reference to the occurrence of “barrels” in layer IV. J Comp Neurol 164:79–94. [Mus musculus, rat and a number of other vertebrates]CrossRefPubMedPubMedCentralGoogle Scholar
  139. Wu SH, Kelly JB (1991) Physiological properties of neurons in the mouse superior olive: Membrane characteristics and postsynaptic responses studied in vitro. J Neurophysiol 65:230–246. [DBA, CIR-BR, A/Thy-1.1]CrossRefPubMedPubMedCentralGoogle Scholar
  140. Yamaguchi T, Wang HL et al (2011) Mesocorticolimbic glutamatergic pathway. J Neurosci 31:8476–8490. [mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  141. Yang H, Yuan PQ et al (2000) Activation of the parapyramidal region in the ventral medulla stimulates gastric acid secretion through vagal pathways in rats. Neuroscience 95:773–779. [rat]CrossRefPubMedPubMedCentralGoogle Scholar
  142. Zeiss CJ (2005) Neuroanatomical phenotyping in the mouse: the dopaminergic system. Vet Pathol 42:753–773. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hannsjörg Schröder
    • 1
    Email author
  • Natasha Moser
    • 1
  • Stefan Huggenberger
    • 2
  1. 1.Department II of AnatomyUniversity Hospital CologneCologneGermany
  2. 2.Institute of Anatomy and Clinical MorphologyUniversity of Witten/HerdeckeWittenGermany

Personalised recommendations