Advertisement

The Mouse Spinal Cord (Medulla Spinalis)

  • Hannsjörg SchröderEmail author
  • Natasha Moser
  • Stefan Huggenberger
Chapter
  • 92 Downloads

Abstract

The mouse spinal cord is the caudal most part of the central nervous system (CNS) and that one which in adult life still allows to recognize the origin from the cylindrical neural tube. The spinal cord can be subdivided into the centrally located gray matter (neuronal perikarya) and the white matter (descending motor and ascending sensory fiber tracts). Furthermore, the spinal cord is the anatomical substrate of mono- and polysynaptic reflexes. The connection to the periphery of the body is provided by the spinal nerves composed of a motor root innervating the muscles and a sensory root transferring sensory input from the periphery to the CNS.

Keywords

Spinal cord Ascending sensory tracts Descending motor tracts Reflexes 

References

  1. Bab I, Hajbi-Yonissi C, Gabet Y, Müller R (2007) Microtomographic atlas of the mouse skeleton. Springer, New York. [C57BL/6]CrossRefGoogle Scholar
  2. Bácskai T, Fu Y et al (2013) Musculotopic organization of the motor neurons supplying forelimb and shoulder girdle muscles in the mouse. Brain Struct Funct 218:221–238. [C57BL/6]CrossRefGoogle Scholar
  3. Bácskai T, Rusznák Z et al (2014) Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing. Brain Struct Funct 219:303–321. [C57BL/6]CrossRefGoogle Scholar
  4. Bareyre FM, Kerschensteiner M et al (2005) Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat Med 11:1355–1360. [Thy1-STOP-YFP x Emx-Cre]CrossRefGoogle Scholar
  5. Bogusch G (1987) Innervation of the dermatomes in the neck of the mouse. Acta Anat (Basel) 129:275–278. [mouse]CrossRefGoogle Scholar
  6. Davidson S, Truong H et al (2010) A quantitative analysis of spinothalamic tract neurons in adult and developing mouse. J Comp Neurol 518:3193–3204. [CD-1]CrossRefGoogle Scholar
  7. Downs KM, Davies T (1993) Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118:1235–1266. [albino mice]Google Scholar
  8. Drews U (1995) Color atlas of embryology. Thieme, StuttgartGoogle Scholar
  9. Engel JP, Madigan TC et al (1997) The transneuronal spread phenotype of herpes simplex virus type 1 infection of the mouse hind footpad. J Virol 71:2425–2435. [Swiss Webster]CrossRefGoogle Scholar
  10. Foerster O (1933) The dermatomes in man. Brain 56:1–39. [man]CrossRefGoogle Scholar
  11. Goodpasture EW, Teague O (1923) Transmission of the virus of herpes febrilis along nerves in experimentally infected rabbits. J Exp Med 44:139–184. [rabbit]Google Scholar
  12. Hantman AW, Jessell TM (2010) Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nature Neurosci 13:1233–1239. [Different transgenic mouse strains]CrossRefGoogle Scholar
  13. Harrison M, O’Brien A et al (2013) Vertebral landmarks for the identification of spinal cord segments in the mouse. NeuroImage 68:22–29. [C57BL/6]CrossRefGoogle Scholar
  14. Heise C, Kayalioglu G (2009) Cytoarchitecture of the spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) The spinal cord. A Christopher and Dana Reeve Foundation Text and Atlas. Academic Press/Elsevier, San DiegoGoogle Scholar
  15. Husch A, Cramer N et al (2011) Long-duration perforated patch recordings from spinal interneurons of adult mice. J Neurophysiol 106:2783–2789. [Chx10::CFP mice]CrossRefGoogle Scholar
  16. Iwaki T (2001) A color atlas of sectional anatomy of the mouse. Adthree Publishing, Tokyo. [ddY and ICR]Google Scholar
  17. Komárek V (2004) Gross anatomy. In: Hedrich HJ, Bullock G (eds) The laboratory mouse. Elsevier, pp 117–132. [mouse]Google Scholar
  18. Liang H, Paxinos G et al (2011) Projection from the brain to the spinal cord in the mouse. Brain Struct Funct 215:159–186. [C57BL/6]CrossRefGoogle Scholar
  19. Liang H, Paxinos G et al (2012) The red nucleus and the rubrospinal projection in the mouse. Brain Struct Funct 217:221–232. [C57BL/6]CrossRefGoogle Scholar
  20. Liang H, Bácskai T et al (2014) Projections from the lateral vestibular nucleus to the spinal cord in the mouse. Brain Struct Funct 219:805–815. [C57BL/6]CrossRefGoogle Scholar
  21. Mesulam M-M (ed) (1982) Tracing neural connections with horseradish peroxidase. IBRO Handbook Series: Methods in the Neurosciences. Wiley, ChichesterGoogle Scholar
  22. Millonig JH, Millen KJ et al (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769. [mouse Dreher]CrossRefGoogle Scholar
  23. Nathan PW, Smith MC et al (1990) The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain 113:303–324. [man]CrossRefGoogle Scholar
  24. Nauta WJH (1993) J Neurosci 13:1337–1345. [rat, cat]CrossRefGoogle Scholar
  25. Padmanabhan S (ed) (2014) Handbook of pharmacogenomics and stratified medicine. Elsevier, AmsterdamGoogle Scholar
  26. Pomeranz LE, Reynolds AE et al (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69:462–500CrossRefGoogle Scholar
  27. Porrero C, Rubio-Garrido P et al (2010) Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice. Brain Res 1345:59–72. [Thy1-eYFP-H transgenic mice]CrossRefGoogle Scholar
  28. Puelles L (2009) Forebrain development: Prosomere model. In: Lemke G (ed) Developmental neurobiology. Academic Press, London, pp 315–319Google Scholar
  29. Qiu K, Lane MA et al (2010) The phrenic motor nucleus in the adult mouse. Exp Neurol 226:254–258. [C57BL/6]CrossRefGoogle Scholar
  30. Renshaw B (1941) Influence of discharge of motoneurons upon excitation of neighboring neurons. J Neurophysiol 4:167–183. [cat]CrossRefGoogle Scholar
  31. Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96:414–495. [cat]CrossRefGoogle Scholar
  32. Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379. [cat]CrossRefGoogle Scholar
  33. Rigaud M, Gemes G et al (2008) Species and strain differences in rodent sciatic nerve anatomy: implications for studies on neuropathic pain. Pain 136:188–201. [C57BL/6, DBA/2J, B6129PF2/J]CrossRefGoogle Scholar
  34. Ruscheweyh R, Forsthuber L (2007) Modification of classical neurochemical markers in identified primary afferent neurons with Aβ-, Aδ- and C-fibers after chronic constriction injury in mice. J Comp Neurol 502:325–336. [FVB]CrossRefGoogle Scholar
  35. Sengul G, Puchalski RB et al (2012) Cytoarchitecture of the spinal cord of the postnatal (P4) mouse. Anat Rec 295:837–845. [C57BL/6J]CrossRefGoogle Scholar
  36. Schröder H, Tochmafschan S et al (2014) Functional implications of anterograde tracing in the mouse corticospinal tract. Program No. 539.07/LL12. 2014 Neuroscience Meeting Planner. 2014. Society for Neuroscience, Washington, DC, 2017. Online. [C57BL/6]Google Scholar
  37. Seitz R, Löhler J et al (1981) Ependyma and meninges of the spinal cord of the mouse. A light and electron microscopic study. Cell Tissue Res 220:61–72CrossRefGoogle Scholar
  38. Sengul G, Charles Watson C (2012) Spinal Cord: Regional Anatomy, Cytoarchitecture and Chemoarchitecture. In: Mai JK, Paxinos G (eds): The Human Nervous System. Academic Press/Elevier, AmsterdamGoogle Scholar
  39. Siembab VC, Smith CA et al (2010) Target selection of propriroceptive and motor axon synapses on neonatal V1-derived Ia inhibitory interneurons and Renshaw cells. J Comp Neurol 518:4675–4701. [Several transgenic mouse lines]CrossRefGoogle Scholar
  40. Smith JS, Angel TE et al (2014) Characterization of individual mouse cerebrospinal fluid proteomes. Proteomics 14:1102–1106. [C57BL/6]CrossRefGoogle Scholar
  41. Steward O, Zheng B et al (2004) The dorsolateral corticospinal tract in mice: an alternative route for corticospinal input to caudal segments following dorsal column lesions. J Comp Neurol 472:463–477. [C57BL/6]CrossRefGoogle Scholar
  42. Vercelli A, Repici M et al (2000) Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull 51:11–28CrossRefGoogle Scholar
  43. Watson C, Harrison M (2012) The location of the major ascending and descending spinal cord tracts in all spinal cord segments in the mouse: actual and extrapolated. Anat Rec (Hoboken) 295:1692–1697. [C57BL/6, several transgenic mouse lines]CrossRefGoogle Scholar
  44. Watson C, Paxinos G, Kayalioglu G (2008) The spinal cord, 1st edition A Christopher and Dana Reeve Foundation Text and Atlas. Academic Press/Elsevier, San Diego. [C57BL/6]Google Scholar
  45. Zaborszky L, Wouterlood FG, Lanciego JL (eds) (2006) Neuroanatomical tract-tracing 3. Molecules, neurons, and systems. Springer, New YorkGoogle Scholar
  46. Zagoraiou L, Akay T et al (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–662. [Several transgenic mouse lines]CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hannsjörg Schröder
    • 1
    Email author
  • Natasha Moser
    • 1
  • Stefan Huggenberger
    • 2
  1. 1.Department II of AnatomyUniversity Hospital CologneCologneGermany
  2. 2.Institute of Anatomy and Clinical MorphologyUniversity of Witten/HerdeckeWittenGermany

Personalised recommendations