The Mouse Hippocampus

  • Hannsjörg SchröderEmail author
  • Natasha Moser
  • Stefan Huggenberger


The hippocampus is the phylogenetically second oldest part of the telencephalon after the olfactory system (Chap. 14). The rodent hippocampus is a continuous structure that changes its cranial dorsal position to a lateroventral location in the more caudal parts where it eventually reaches the ventral surface of the brain. The human hippocampus has a basal position in the telencephalon but, regarding its fine structure, is very much alike that of the rodent hippocampus. By contrast to the neocortex (Chap. 10), the hippocampus consists mainly of three layers and can roughly be subdivided into the dentate gyrus and the Cornu Ammonis. It is part of a functionally very important circuit for the short-term and long-term memory starting in the neighboring entorhinal cortex via the dentate gyrus and Cornu Ammonis back to the entorhinal cortex (classical trisynaptic pathway). The disruption of this circuit by decline of neurons of the entorhinal cortex is a hallmark of human Alzheimer’s disease which leads to a loss of the short-term and long-term memory. In addition to the memory function, the hippocampus subserves spatiotemporal orientation.


Hippocampus Archicortex Dentate gyrus Cornu Ammonis Entorhinal cortex Short-term memory Long-term memory Spatial orientation 


  1. Adamek GD, Shipley MT et al (1984) The indusium griseum in the mouse: architecture, Timm's histochemistry and some afferent connections. Brain Res Bull 12:657–668. [BALB-C]CrossRefGoogle Scholar
  2. Baldo B, Petersén Å (2015) Analysis of nonmotor features in Murine Models of Huntington disease. In: LeDoux MS (ed) Movement disorders, 2nd edn. Chapter 35, Academic Press,
  3. Barry G, Piper M et al (2008) Specific glial populations regulate hippocampal morphogenesis. J Neurosci 28:12328–12340. [C57BL/6J, Nfib mice]CrossRefGoogle Scholar
  4. Beaudin SA, Singh T et al (2013) Borders and comparative Cytoarchitecture of the Perirhinal and Postrhinal Cortices in an F1 hybrid mouse. Cereb Cortex 23:460–476. [C57BL6/J, 129P3/J, B6129PF/J1]CrossRefGoogle Scholar
  5. Braak H, Del Tredici K (2015) Neuroanatomy and pathology of Sporadic Alzheimer’s disease. Adv Anat Embryol Cell Biol. Germany 215:1–162. [Man]Google Scholar
  6. Caronia-Brown G, Yoshida M et al (2014) The cortical hem regulates the size and patterning of neocortex. Development 141:2855–2865. [Several transgenic mouse lines]CrossRefGoogle Scholar
  7. Cassell MD, Brown MW (1984) The Distribution of Timm’s Stain in the Nonsulphide-perfused Human Hippocampal Formation. J Comp Neurol 222:461–471. [Man]CrossRefGoogle Scholar
  8. Cathrin B, Canto CB, Wouterlood F et al (2008) What does the Anatomical Organization of the Entorhinal Cortex tell us? Neural Plast 2008:381243Google Scholar
  9. Clarkson A (1896) A text-book of histology. Descriptive and practical. For the use of students. London: Simpkin, Marshall, Hamilton, Kent and Co.Google Scholar
  10. Duvernoy HM, Cattin F, Risold P-Y (2013) The human hippocampus: functional anatomy, vascularization and serial sections with MRI, 4th edn. Germany: Springer-Verlag Berlin Heidelberg, Germany.
  11. Gallyas F, Farkas O et al (2004) Gel-to-gel phase transition may occur in mammalian cells: mechanism of formation of “dark” (compacted) neurons. Biol Cell 96:313–324CrossRefGoogle Scholar
  12. Hosp JA, Strüber M et al (2014) Morpho-physiological criteria divide Dentate Gyrus Interneurons into classes. Hippocampus 24:189–203. [Knock-in GAD67-eGFP crossed with C57/Bl6]CrossRefGoogle Scholar
  13. Huggenberger S, Moser N et al (2019) Neuroanatomie des Menschen. Springer, HeidelbergGoogle Scholar
  14. Koelliker A (1896) Handbuch der Gewebelehre des Menschen. II, Nervensystem des Menschen und der Thiere. 6. Aufl. W. Engelmann, LeipzigGoogle Scholar
  15. Mitsuya K, Nitta N et al (2009) Persistent zinc depletion in the mossy fiber terminals in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Epilepsia 50:1979–1990. [C57BL6J]CrossRefGoogle Scholar
  16. Müller M, Faber-Zuschratter H et al (2012) Synaptology of ventral CA1 and subiculum projections to the basomedial nucleus of the amygdala in the mouse: relation to GABAergic interneurons. Brain Struct Funct 217:5–17. [GAD67-GFP knock-in mice]CrossRefGoogle Scholar
  17. Muraoka D, Katsuama Y et al (2007) Postnatal development of entorhinodentate projection of the reeler mutant mouse. Dev Neurosci 29:59–72. [reeler mouse ]CrossRefGoogle Scholar
  18. Neves G, Cooke FM et al (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75CrossRefGoogle Scholar
  19. Nullmeier S, Panther P et al (2014) Alterations in the hippocampal and striatal catecholaminergic fiber densities of heterozygous reeler mice. Neuroscience 275:404–419. [Heterozygous reeler mice (HRM) B6C3Fe a/a-Reln rl/+ strain and WT littermates]CrossRefGoogle Scholar
  20. O’Mara S (2005) The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. J Anat 207:271–282CrossRefGoogle Scholar
  21. Oka Y, Ye M et al (2015) Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520:349–352. [C57BL/6J + several transgenic mouse lines]CrossRefGoogle Scholar
  22. Parent MA, Wang L et al (2010) Identification of the Hippocampal input to medial prefrontal cortex. Cereb Cortex 20:393–405. [mouse]CrossRefGoogle Scholar
  23. Paxinos G, Watson C (2010) BrainNavigator. Interactive atlas and 3D brain software for research, structure analysis, and education. Elsevier, AmsterdamGoogle Scholar
  24. Ramòn Cajal S (1911) Histologie du Système Nerveux de L’Homme & des Vertébrés. Tome II. Paris. A. MaloineGoogle Scholar
  25. Rose M (1929) Cytoarchitektonischer Atlas der Großhirnrinde der Maus. J Psychol Neurol 40:1–32. (1929) [mouse]Google Scholar
  26. Salay LD, Ishiko N et al (2018) A midline thalamic circuit determines reactions to visual threat. Nature 557:183–189. [C57BL/6]CrossRefGoogle Scholar
  27. Schambra U (2008) Prenatal mouse atlas. US: Springer. [C57BL/6J]
  28. Scoville WB, Milne B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21. [man]CrossRefGoogle Scholar
  29. Slomianka L, Geneser FA (1991a) Distribution of acetylcholinesterase in the hippocampal region of the mouse: I. Entorhinal area, parasubiculum, retrosplenial area, and presubiculum. J Comp Neurol 303:339–354. [Wild captured Mus musculus domesticus]CrossRefGoogle Scholar
  30. Slomianka L, Geneser FA (1991b) Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus. J Comp Neurol 311:525–536. [Wild captured Mus musculus domesticus]CrossRefGoogle Scholar
  31. Spruston N, McBain (2007) Structural and functional properties of hippocampal neurons. In: Andersen P et al (2007) (eds) The Hippocampus book, Chapter 5. Oxford University Press, USAGoogle Scholar
  32. Stanfield BB, Cowan WM (1979) The morphology of the hippocampus and dentate gyrus in normal and Reeler mice. J Comp Neurol 185:393–422CrossRefGoogle Scholar
  33. Timm F (1958) Zur Histochemie des Ammonshorngebietes. Z Zellforsch Mikrosk Anat 48:548–555. [Several mammals, no mice]CrossRefGoogle Scholar
  34. Tueting P, Costa E et al (1999) The phenotypic characteristics of the heterozygous reeler mouse. Neuroreport 10:1329–1334CrossRefGoogle Scholar
  35. Urbán N, Guillemot F (2014) Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 8:Article 396. [mouse]CrossRefGoogle Scholar
  36. Van Groen T (2001) Entorhinal cortex of the mouse: Cytoarchitectonical organization. Hippocampus 11:397–407. [C57BL/6]CrossRefGoogle Scholar
  37. Varela-Nallar L, Arredondo SB et al (2015) Andrographolide stimulates neurogenesis in the adult Hippocampus. Neural Plast 2015:Article ID 935403. [C57BL/6, APPswe/PSEN1Δ E9]CrossRefGoogle Scholar
  38. Walther C (2002) Hippocampal terminology: concepts, misconceptions, origins. Endeavour 26:41–44CrossRefGoogle Scholar
  39. Yi F, Catudio-Garrett E et al. (2015) Hippocampal‚ cholinergic interneurons visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front Synaptic Neurosci. 7:Article 4. [Several transgenic mouse lines]Google Scholar
  40. Zhao T, Kraemer N et al (2006) Emx2 in the developing hippocampal fissure region. Eur J Neurosci 23:2895–2907. [Emx2-/- on C57BL/6 background]CrossRefGoogle Scholar
  41. Zhao C, Deng W et al (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660CrossRefGoogle Scholar
  42. Tricoire L, Pelkey KA et al (2011) A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J Neurosci 31:10948–10970. [Double-heterozygote Olig2CreER/+:Z/EG+/− and double-homozygous Mash1BACCreER/CreER/RCE:LoxP+/+ mice on Swiss Webster background]CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hannsjörg Schröder
    • 1
    Email author
  • Natasha Moser
    • 1
  • Stefan Huggenberger
    • 2
  1. 1.Department II of AnatomyUniversity Hospital CologneCologneGermany
  2. 2.Institute of Anatomy and Clinical MorphologyUniversity of Witten/HerdeckeWittenGermany

Personalised recommendations