The Mouse Cerebral Cortex

  • Hannsjörg SchröderEmail author
  • Natasha Moser
  • Stefan Huggenberger


The cerebral cortex is the hierarchically highest unit of the mammalian brain. The entire afferent sensory information (somatosensory, visual, auditory, gustatory, olfactory) is represented there mostly in a topic fashion. With the exception of olfaction, all the mentioned sensory qualities are transferred to the cerebral cortex via the dorsal thalamus (► Chap.  8). The primary motor cortex is the site of origin of the corticospinal tract executing voluntary movements. A loop of neurons ensures the communication of the cortex with the cerebellum starting in the frontal cortex, reaching the pontine nuclei (► Chap.  6) which in turn transmit signals to the cerebellum. From there the way back to the cortex is realized via the thalamic motor nuclei (► Chap.  8) to the cerebral cortex. Secondary and tertiary association areas of the cerebral cortex compute incoming signals from the primary cortices and link different qualities.


Cerebral cortex Telencephalon Primary cortex Secondary cortex Tertiary cortex Corticospinal tract Cortico-subcortico-cortical loops 


  1. Airey DC, Robbins AI et al (2005) Variation in the cortical area map of C57BL/6J and DBA/2J inbred mice predicts strain identity. BMC Neurosci 6:18. [C57BL/6J, DBA/2J]CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barthas F, Kwan AC (2017) Secondary motor cortex: where ‘sensory’ meets ‘motor’ in the rodent frontal cortex. Trends Neurosci 40:181–193. [mouse, rat]CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beaudin SA, Singh T et al (2013) Borders and comparative cytoarchitecture of the perirhinal and postrhinal cortices in an F1 hybrid mouse. Cereb Cortex 23:460–476. [mouse]Google Scholar
  4. Benshalom G, White EL (1986) Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex. J Comp Neurol 253:302–314. [CD/1]CrossRefGoogle Scholar
  5. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Verlag von Johann Ambrosius Barth, LeipzigGoogle Scholar
  6. Broms J, Grahm M et al (2017) Monosynaptic retrograde tracing of neurons in the G-protein coupled receptor Gpr151 in the mouse brain. J Comp Neurol 525:3227–3250. [Tg(Gpr151-Cre)#Ito transgenic mouse maintained on a C57BL/6J background]CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cádiz-Moretti B, Otero-García M et al (2014) Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse. Brain Struct Funct 221:1033–1065. [CD1]CrossRefPubMedPubMedCentralGoogle Scholar
  8. Caviness VS (1975) Architectonic map of neocortex of the normal mouse. J Comp Neurol 164:247–264. [C3HxC57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cho J, Sharp PE (2001) Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav Neurosci 115:3–25CrossRefPubMedPubMedCentralGoogle Scholar
  10. Collins DP, Anastasiades PG et al (2018) Reciprocal circuits linking the prefrontal cortex with dorsal and ventral thalamic nuclei. Neuron 98:366–379. [Immune-competent P42-P70 wild-type mice, Ai14 reporter mice, Emx1-Cre mice all bred on a C57 BL/6J background]CrossRefPubMedPubMedCentralGoogle Scholar
  11. Corcoran KA, Leaderbrand K et al (2015) Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling. Transl Psychiatry 5:e657. [C57BL/6N]CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dong HW (2004) Allen reference atlas. Allen Institute for Brain Science, Seattle, WAGoogle Scholar
  13. Donovan SL, McCasland JS (2008) GAP-43 is critical for normal targeting of thalamocortical and corticothalamic, but not trigeminothalamic axons in the whisker barrel system. Somatosens Mot Res 25:33–48. [GAP-43 k.o]CrossRefPubMedPubMedCentralGoogle Scholar
  14. Edwards TJ, Sherr EH et al (2014) Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain 137:1579–1613CrossRefPubMedPubMedCentralGoogle Scholar
  15. Eleore L, López-Ramos JC et al (2011) Role of reuniens nucleus projections to the medial prefrontal cortex and to the hippocampal pyramidal CA1 area in associative learning. PLoS One 6(8):e23538. [Swiss]CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gasquoine PG (2013) Localization of function in anterior cingulate cortex: from psychosurgery to functional neuroimaging. Neurosci Biobehav Rev 37:340–348CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gil V, Nocentini S et al (2014) Historical first descriptions of Cajal–Retzius cells: from pioneer studies to current knowledge. Front Neuroanat 8:32CrossRefPubMedPubMedCentralGoogle Scholar
  18. Graziano A, Liu XB, Murray KD et al (2008) Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse. J Comp Neurol 507:1258–1276. [Swiss Webster mice]CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guldin WO, Pritzel M et al (1981) Prefrontal cortex of the mouse defined as cortical projection area of the thalamic mediodorsal nucleus. Brain Behav Evol 19:93–107. [MNRI]CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hackett TA, Barkat TR et al (2011) Linking topography to tonotopy in the mouse auditory thalamocortical circuit. J Neurosci 31:2983–2995. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hinrichsen KV (1991) Humanembryologie. Lehrbuch und Atlas der vorgeburtlichen Entwicklung des Menschen. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  22. Hishida R, Kudoh M (2014) Multimodal cortical sensory pathways revealed by sequential transcranial electrical stimulation in mice. Neurosci Res 87:49–55. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hoerder-Suabedissen A, Hayashi S et al (2018) Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cereb Cortex 28:1882–1897. [Several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hof PR, Young WG, Bloom FE, Belichenko PV, Celio MR (eds) (2000) Comparative cytoarchitectonic atlas of the C57BL/6 and 129/Sv mouse brains. Elsevier, Amsterdam. [C57BL/6, 129/Sv]Google Scholar
  25. Hooks BM, Hires SA et al (2011) Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas. PLoS 9:e1000572. [mouse]CrossRefGoogle Scholar
  26. Hooks BM, Mao T et al (2013) Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J Neurosci 33:748–760. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  27. Huggenberger S, Moser N, Schröder H et al (2019) Neuroanatomie des Menschen. SpringerGoogle Scholar
  28. Inda MC, DeFelipe J et al (2009) Morphology and distribution of chandelier cell axon terminals in the mouse cerebral cortex and claustroamygdaloid complex. Cereb Cortex 19:41–54. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jiang X, Shen S et al (2015) Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350(6264):aac9462. [Several transgenic lines]CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jouhanneau JS, Ferrarese L (2014) Cortical fosGFP expression reveals broad receptive field excitatory neurons targeted by POm. Science 350(6264):aac9462. [Several transgenic lines]Google Scholar
  31. Jurik A, Auffenberg E et al (2015) Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception. Pain 156:2479–2491. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kerschensteiner D, Guido W (2017) Organization of the dorsal lateral geniculate nucleus in the mouse. Vis Neurosci 34:e008. [mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kim BS, Lee J et al (2014) Differential regulation of observational fear and neural oscillations by serotonin and dopamine in the mouse anterior cingulate cortex. Psychopharmacology 231:4371–4381. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim EJ, Juvnanett AL et al (2015) Three types of cortical layer 5 neurons that differ in brain-wide connectivity and function. Neuron 88:1253–1267. [C57BL/6, several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kley W (1986) Alfonso Corti (1822–1876)--discoverer of the sensory end organ of hearing in Würzburg. ORL J Otorhinolaryngol Relat Spec 48:61–67CrossRefPubMedPubMedCentralGoogle Scholar
  36. Korkmaz Y, Baumann MA et al (2005) NO-cGMP signaling molecules in cells of the rat molar dentin-pulp complex. J Dent Res 84:618–623CrossRefPubMedPubMedCentralGoogle Scholar
  37. Krumin M, Lee JJ et al (2018) Decision and navigation in mouse parietal cortex. elife 7:e42583. [C57bl/6 (sic) and several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar
  38. Llinas RR, Leznik E et al (2002) Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci U S A 99:449–454. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lorente de Nó R (1922) La corteza cerebral del ratón. Trab Lab Invest Bio (Madrid) 20:41–78. [mouse]Google Scholar
  40. Manuel MN, Mi D et al (2015) Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 9:70PubMedPubMedCentralGoogle Scholar
  41. Martinotti C (1889) Contributo allo studio della corteccia cerebrale, ed all’ origine centrale dei nervi. Ann Freniatr Sci Affini 1:14–381Google Scholar
  42. Martynoga B, Drechsel D et al (2012) Molecular control of neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol 4:a008359CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mátyás F, Lee JH et al (2014) The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala. Eur J Neurosci 39:1810–1823. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  44. Meechan DW, Rutz HLH et al (2015) Cognitive ability is associated with altered medial frontal cortical circuits in the LgDel mouse model of 22q11.2DS. Cereb Cortex 25:1143–1151. [LgDel line maintained on C57/Bl6N (sic) background]CrossRefPubMedPubMedCentralGoogle Scholar
  45. Motomura K, Kosaka T (2011) Medioventral part of the posterior thalamus in the mouse. J Chem Neuroanat 42:192–209. [mouse]CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nakayama D, Baraki Z et al (2015) Frontal association cortex is engaged in stimulus integration during associative learning. Curr Biol 25:117–123. [C57BL/6J]CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nieuwenhuys R, Hans J, Nicholson C (1998) The central nervous system of vertebrates, vol I. Springer, BerlinCrossRefGoogle Scholar
  48. Ozaki HS, Wahlsten D (1998) Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse. J Comp Neurol 400:197–206. [Hybrid cross B6D2F2/J]CrossRefPubMedPubMedCentralGoogle Scholar
  49. Parnaudeau S, O’Neill PK et al (2013) Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77:1151–1162. [C57/Bl6]Google Scholar
  50. Paxinos G (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 4th edn. Elsevier, Amsterdam. [C57BL/6]Google Scholar
  51. Paxinos G, Watson C (2010) BrainNavigator. Interactive atlas and 3D brain software for Research, Structure Analysis, and Education. Elsevier, AmsterdamGoogle Scholar
  52. Pingel J, Ostwald J et al (2010) Normative data for a solution-based taste test. Eur Arch Otorhinolaryngol 267:1911–1917. [man]CrossRefPubMedPubMedCentralGoogle Scholar
  53. Porter JT, Johnson CK et al (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21:2699–2710. [ICR]CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ramón y Cajal S (1911) Histologie du Système Nerveux de L’Homme & des Vertébrés. Tome II. A. Maloine, ParisGoogle Scholar
  55. Rash BG, Richards LJ (2001) A role for cingulate pioneering axons in the development of the corpus callosum. J Comp Neurol 434:147–157. [C57BL/6J]CrossRefPubMedPubMedCentralGoogle Scholar
  56. Richards LJ, Plachez C et al (2004) Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet 66:276–289CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rose M (1929) Cytoarchitektonischer Atlas der Großhirnrinde der Maus. J Psychol Neurol 40:1–32. [mouse]Google Scholar
  58. Roth MM, Dahmen JC et al (2016) Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex: Nat Neurosci. 19:299–307. [C57BL/6]Google Scholar
  59. Saffiedine S, El-Amraoui A et al (2012) The auditory hair cell ribbon synapse: from assembly to function. Annu Rev Neurosci 35:509–528CrossRefGoogle Scholar
  60. Salay LD, Ishiko N et al (2018) A midline thalamic circuit determines reactions to visual threat. Nature 557:183–189. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  61. Satoh-Kuriwada S, Kawai M et al (2012) Assessment of umami taste sensitivity. J Nutr Food Sci S10:003. [man]Google Scholar
  62. Singer W, Panford-Walsh R et al (2013) The function of BDNF in the adult auditory system. Neuropharmacology 76:719–728CrossRefPubMedPubMedCentralGoogle Scholar
  63. Steinhausen C, Zehl L et al (2016) Multivariate meta-analysis of brain-mass correlations in eutherian mammals. Front Neuroanat 10:91CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stolerman I (ed) (2010) Encyclopedia of psychopharmacology. Springer, Berlin/LondonGoogle Scholar
  65. Sumser A, Mease RA et al (2017) Organization and somatotopy of corticothalamic projections from L5B in mouse barrel cortex. Proc Natl Acad Sci U S A 114:8853–8858. [mouse]Google Scholar
  66. Sun T, Hevner RF (2014) Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci 15:217–232CrossRefPubMedPubMedCentralGoogle Scholar
  67. Terashima T, Inoue K et al (1987) Thalamic connectivity of the primary motor cortex of normal and Reeler mutant mice. J Comp Neurol 257:405–421. [Balb/c]CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tlamsa AP, Brumberg JC (2010) Organization and morphology of thalamocortical neurons of mouse ventral lateral thalamus. Somatosens Mot Res 27:34–43. [CD1]CrossRefGoogle Scholar
  69. Tomioka R, Sakimura K et al (2015) Corticofugal GABAergic projection neurons in the mouse frontal cortex. Front Neuroanat 9:133. [GAD67-Cre knock-in mice, GAD67-GFP knock-in mice]CrossRefPubMedPubMedCentralGoogle Scholar
  70. Treuting PM, Morton TH Jr (2012) Oral cavity and teeth. In: Treuting PM, Dintzis SM (eds) Comparative anatomy and histology. A mouse and human atlas. Elsevier/Academic Press, AmsterdamGoogle Scholar
  71. Tsukano H, Horie M et al (2017) Reconsidering tonotopic maps in the auditory cortex and lemniscal auditory thalamus in mice. Front Neural Circuits 11:14PubMedPubMedCentralGoogle Scholar
  72. Uziel D, Mühlfriedel S et al (2002) Miswiring of limbic thalamocortical projections in the absence of ephrin-A5. J Neurosci 22:9352–9357. [Ephrin A5 k.o. mice, wild type mice]CrossRefPubMedPubMedCentralGoogle Scholar
  73. Van de Werd HJ, Rajkowska G, Evers P, Uylings HB (2010) Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 214:339–353. [C57BL/6]CrossRefGoogle Scholar
  74. Vann SD, Aggleton JP (2004) Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behav Brain Res 155:97–108CrossRefPubMedPubMedCentralGoogle Scholar
  75. Verney C, Farkas-Bargeton E et al (1982) Reorganization of thalamo-cortical connections in mice dewhiskered since birth. Neurosci Lett 32:265–270. [Swiss]CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wang Q, Burkhalter A (2007) Area map of mouse visual cortex. J Comp Neurol 502:339–357. (2007) [C57BL/6J]CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wang Q, Ng L et al (2016) Organization of the connections between claustrum and cortex in the mouse. J Comp Neurol 525:1317–1346. [Gnb4-IRES2-Cre and Ntng2-IRES2-Cre ON C57BL/6JCrossRefPubMedPubMedCentralGoogle Scholar
  78. Woolsey TA, Welker C (1975) Comparative anatomical studies of the SmI face cortex with special reference to the occurrence of “barrels” in Layer IV. J Comp Neurol 164:79–94. [Mus musculus]Google Scholar
  79. Wree A, Zilles K et al (1983) A quantitative approach to cytoarchitectonics, VIII. The areal pattern of the cortex of the albino mouse. Anat Embryol 166:333–353. [BalbC]CrossRefPubMedPubMedCentralGoogle Scholar
  80. Xu W, Südhof TC (2013) A neural circuit for memory specificity and generalization. Science 339:1290–1294. [C57BL/6]CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zembrzycki A, Chou S-J et al (2013) Sensory cortex limits cortical maps and drives top-down plasticity in thalamocortical circuits. Nat Neurosci 16:1060–1067. [Several transgenic lines on C57BL/6 background]CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhou N, Masterson SP et al (2018) The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J Neurosci 38:347–362. [C57BL/6, several transgenic lines]CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhuang J, Ng L et al (2017) An extended retinotopic map of mouse cortex. elife 6:e18372. [Several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zimmermann KS, Yamin JA (2017) Connections of the mouse orbitofrontal cortex and regulation of goal-directed action selection by brain-derived neurotrophic factor. Biol Psychiatry 81:366–377. [C57BL/6 and several transgenic mouse lines]CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hannsjörg Schröder
    • 1
    Email author
  • Natasha Moser
    • 1
  • Stefan Huggenberger
    • 2
  1. 1.Department II of AnatomyUniversity Hospital CologneCologneGermany
  2. 2.Institute of Anatomy and Clinical MorphologyUniversity of Witten/HerdeckeWittenGermany

Personalised recommendations