A Concise Compilation of the Diverse Detection Methods to Study Plant-Microbe Interfaces at the Cellular and Molecular Level: The Past, Present and Future

  • Regina Sharmila Dass
  • Rathijit Mallick


Plant-microbe interaction can be classified under certain distinctive categories like synergistic, associative or pathogenic. The degree of friendly or hostile consortium depends on the kinds and species of microorganisms involved. These interactions are observed at various physiological planes of the host plant which in turn build the basis of molecular and genetic modifications. These changes then direct the path for biochemical reactions which occur between the plants and microbes. As a result of which, nutrient sequestration, mineral solubilization, nitrogen fixation, etc. are embarked upon by the plants, and in exchange the microbes get building blocks for energy conservation in their system. Due to this coevolutionary existence in the same niche, both have acquired mechanisms to defend each other’s non-complementary company as well. Before the scientific advent of modern molecular instruments and technologies, traditional methods such as culturing on solid media, light and electron microscopic observations and biochemical tests provided initial insight into a broader realization of how these two beings communicate. As years passed, the dire need of new, effortless techniques with contemporary serological and molecular-based methodologies like isozyme assays, polymerase chain reaction (PCR), enzyme-linked assays (ELISA, RIA), microarrays (lab-on-chip), nucleic acid-based techniques (next-generation sequencing, whole genome sequencing, etc.) surfaced. Also, the invention of particular high-resolution microscopic techniques like video microscopy, confocal laser scanning microscopy (CLSM) and fluorescence microscopy brought a whole set of new information at cellular level. Apart from these, high spectral imaging also proved to be efficient enough to detect the disease symptoms at an early stage based on volatile organic compound profiling. A compilation is presented.


Polymerase chain reaction Microarrays Next-generation sequencing Genome sequencing 


  1. Abad ZG, Abad JA, Cofffey MD, Oudemans PV, Veld WA, de Gruyter H, Cunnington J, Louws FJ (2008) Phytophthora bischeria sp. nov., a new species identified in isolates from the rosaceous raspberry, rose and strawberry in three continents. Mycologia 100:99–110PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alexopoulos CJ, Mims CW, Blackwell M (2010) Introductory mycology, 4th edn. Wiley, NoidaGoogle Scholar
  3. Allard-Massicotte R, Tessier L, Lecuyer F, Lakshmanan V, Lucier JF, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB (2016) Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7:e01664-16PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signalling in plant-microbe interactions. Science 276:726–733PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barber DA, Martin JK (1976) The release of organic substances by cereal roots into soil. New Phytol 76:69–80CrossRefGoogle Scholar
  6. Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bever JD, Schultz PA, Pringle A, Mortan JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923–931CrossRefGoogle Scholar
  8. Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bohin JP, Lacroix JM (2006) Osmoregulation in the periplasm. In: Ehrmann M (ed) The Periplasm. American Society for Microbiology, Washington, DC, pp 325–341Google Scholar
  10. Bonde MR, Peterson GL, Dowler WM, May B (1984) Isozyme analysis to differentiate species of Peronosclerospora causing downy mildews for maize. Phytopathology 74:1278CrossRefGoogle Scholar
  11. Bonde MR, Peterson GL, Dowler WM, May B (1985) Comparison of Tilletia indica isolates from India and Mexico by isozyme analysis. Phytopathology 75:1309CrossRefGoogle Scholar
  12. Bonde MR, Peterson GL, Matsumoto TT (1989) The use of isozymes to identify teliospores of Tilletia indica. Phytopathology 79:596–599CrossRefGoogle Scholar
  13. Bonde MR, Micales JA, Peterson GL (1993) The use of isozyme analysis for identification of plant pathogenic fungi. Plant Dis 77:961–968CrossRefGoogle Scholar
  14. Booth C (1971) The genus fusarium commonwealth mycological institute. CAB International, Kew, SurreyGoogle Scholar
  15. Bouchart F, Delangle A, Lemoine J, Bohin JP, Lacroix JM (2007) Proteomic analysis of a non-virulent mutant of the phytopathogenic bacterium Erwinia chrysanthemi deficient in osmoregulated periplasmic glucans: change in protein expression is not restricted to the envelope, but affects general metabolism. Microbiology 153:760–767PubMedCrossRefPubMedCentralGoogle Scholar
  16. Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brimecombe MJ, De Leij FAAM, Lynch JM (2007) Rhizodeposition and microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, NY, pp 41–93Google Scholar
  18. Bulgarelli D, Schlaeppi K, Spaeten S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  19. Buscot F (2015) Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. J Plant Physiol 172:55–61PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cai H, Caswell J, Prescott J (2014) Nonculture molecular techniques for diagnosis of bacterial disease in animals a diagnostic laboratory perspective. Vet Pathol 51:341–350PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chang CJ, Garnier M, Zreik L, Rossetti V, Bove JM (1993) Culture and serological detection of the xylem-limited bacterium causing citrus variegated chlorosis and its identification as a strain of Xylella fastidiosa. Curr Microbiol 27:137–142PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interaction: shaping the evolution of the plant immune response. Cell 124(4):803–814PubMedCrossRefPubMedCentralGoogle Scholar
  23. Clark MF, Adams A (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483PubMedCrossRefPubMedCentralGoogle Scholar
  24. Collmer A, Keen NT (1986) The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24:383–409CrossRefGoogle Scholar
  25. Compant S, Clement C, Sessitsch A (2010) Plant growth promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  26. Davis MJ, Purcell AH, Thomson SV (1978) Pierce’s disease of grapevines: isolation of the causal bacterium. Science 199:75–77PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dunoyer P, Voinnet O (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423PubMedCrossRefPubMedCentralGoogle Scholar
  28. Ellis J, Dodds P, Pryor T (2000) The generation of plant disease resistance gene specificities. Trends Plant Sci 5:373–379PubMedCrossRefPubMedCentralGoogle Scholar
  29. Englert DL, Manson MD, Jayaraman A (2010) A microfluidic device for quantifying bacterial chemotaxis in stable concentration gradients. J Vis Exp 38:2–7Google Scholar
  30. Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. The American Phytopathology Society Press, St. Paul, MNGoogle Scholar
  31. Flor AH (1955) Host-parasite interactions in flax rust – its genetics and other implications. Phytopathology 45:680–685Google Scholar
  32. Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9:385–402PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fukuzawa N, Itchoda N, Ishihara T, Goto K, Masuta C, Matsumura T (2010) HC-pro, a potyvirus RNA silencing suppressor, cancels cycling of cucumber mosaic virus in Nicotiana benthamiana plants. Virus Genes 40:440–446PubMedCrossRefPubMedCentralGoogle Scholar
  34. Gehrig H, Schussler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol 43:71–81PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gorris MT, Alarcon B, Lopez M, Cambra M (1994) Characterization of monoclonal antibodies specific for Erwinia carotovora subsp. atroseptica and comparison of serological methods for its sensitive detection on potato tubers. Appl Environ Microbiol 60:2076–2085PubMedPubMedCentralGoogle Scholar
  36. Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M (2011) The root chip: an integrated microfluidic chip for plant science. Plant Cell 23:4234–4240PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hacquard S, Garrido-Oter R, Gonza’lez A, Spaepen S, Ackermann G, Lebeis S, AC MH, Dangl JL, Knight R, Ley R, Schulze-Lefert P (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17(5):603–616PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  39. Hammond-Kosack K, Jones JDG (2000) Responses to plant pathogens. American Society of Plant Physiology, Rockville, pp 1102–1156Google Scholar
  40. Hardham AR, Suzaki E, Perkin JL (1986) Monoclonal antibodies to isolate- species- and genus specific components on the surface of zoospores and cysts of the genus Phytophthora cinnamomi. Canad J Bot 64:311–321CrossRefGoogle Scholar
  41. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471PubMedPubMedCentralCrossRefGoogle Scholar
  42. Heath CM (2000) Advances in imaging the cell biology of plant-microbe interactions. Annu Rev Phytopathol 38:443–549PubMedCrossRefPubMedCentralGoogle Scholar
  43. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133PubMedCrossRefPubMedCentralGoogle Scholar
  44. Heinlein M (2015) Plant virus replication and movement. Virology 479–480:657–671PubMedCrossRefPubMedCentralGoogle Scholar
  45. Holzloehner P, Schliebs E, Maier N, Füner J, Micheel B, Heilmann K (2013) Production of monoclonal camelid antibodies by means of hybridoma technology. J Immunol 190:135.14Google Scholar
  46. Hugouvieux-Cotte-Pattat N, Condemine G, Nasser W, Reverchon S (1996) Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol 50:213–257PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hütsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition – an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407CrossRefGoogle Scholar
  48. Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531PubMedCrossRefPubMedCentralGoogle Scholar
  49. Incarbone MP, Dunoyer P (2013) RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci 18:382–392PubMedCrossRefPubMedCentralGoogle Scholar
  50. Inoue S, Spring KR (1997) Video microscopy: the fundamentals, 2nd edn. Plenum, New York/London, p 741CrossRefGoogle Scholar
  51. James D (1999) A simple and reliable protocol for the detection of apple stem grooving virus by RT-PCR and in a multiplex PCR assay. J Virol Methods 83:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  52. Jiang H, Xu Z, Aluru MR, Dong L (2014) Plant chip for high-throughput phenotyping of Arabidopsis. Lab Chip 14:1281–1293PubMedCrossRefPubMedCentralGoogle Scholar
  53. Karthikeyan M, Radhika K, Bhaskaran R, Mathiyazhagan S, Samiyappan R, Velazahahan R (2006) Rapid detection of Ganoderma disease of coconut and assessment of inhibition effect of various control measures by immunoassay and PCR. Plant Protect Sci 42:49–57CrossRefGoogle Scholar
  54. Kaufmann PJ, Weidemann GJ (1996) Isozyme analysis of Colletotrichum gloeosporioides from five host genera. Plant Dis 80:1289–1293CrossRefGoogle Scholar
  55. Kitagawa T, Sakamoto Y, Furumi K, Ogura H (1989) Novel enzyme immunoassays for specific detection of Fusarium oxysporum f.sp. cucumerinum and for general detection of various Fusarium species. Phytopathology 79:162–165CrossRefGoogle Scholar
  56. Klerks MM, Leone G, Lindner JL, Schoen CD, van den Heuvel JFJM (2001) Rapid and sensitive detection of apple stem pitting virus in apple trees through RNA amplification and probing with fluorescent molecular beacons. Phytopathology 91:1085–1091PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganama N, Kawaguchi M (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51:1381–1397PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kox LFF, van Brouwershaven IR, van de Vossenberg BTLH, van den Beld HE, Bonants PJM, de Gruyter J (2007) Diagnostic values and utility of immunological, morphological and molecular methods for in planta detection of Phytophthora ramorum. Phytopathology 97:1119–1129PubMedCrossRefPubMedCentralGoogle Scholar
  59. Láday M, Szécsi Á (2001) Distinct electrophoretic isozyme profiles of Fusarium graminearum and closely related species. System Appl Microbiol 24:67–75CrossRefGoogle Scholar
  60. Láday M, Szécsi Á (2002) Identification of Fusarium species by isozyme analysis. Acta Microbiol Immunol Hung 49:321–330PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lenc L, Kwasna H, Sadowski C (2011) Dynamics of the root/soil pathogens and antagonists in organic and integrated production of potato. Eur J Plant Pathol 131:603–620CrossRefGoogle Scholar
  62. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual, 1st edn. Blackwell, Oxford/LondonCrossRefGoogle Scholar
  63. Leveau JHJ, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 98:3446–3453PubMedPubMedCentralCrossRefGoogle Scholar
  64. Li F, Ding SW (2006) Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60:503–531PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lievens B, Brouwer M, Vanachter ACRC, Cammue BPA, Thomma BPHJ (2006) Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci 171:155–165CrossRefGoogle Scholar
  66. Lindgren PB (1997) The role of hrp genes during plant-bacterial interactions. Annu Rev Phytopathol 35:129–152PubMedCrossRefPubMedCentralGoogle Scholar
  67. López MM, Llop P, Cubero J, Penyalver R, Caruso P, Bertolini E, Penalver J, Gorris MT, Cambra M (2001) Strategies for improving serological and molecular detection of plant pathogenic bacteria. In: Plant pathogenic bacteria. Springer, Cham, pp 83–86CrossRefGoogle Scholar
  68. Lopez MM, Bertolini E, Olmos A, Caruso P, Gorris MT, Llop P, Penyalver R, Cambra M (2003) Innovative tools for the detection of plant pathogenic viruses and bacteria. Int Microbiol 6:233–243PubMedCrossRefPubMedCentralGoogle Scholar
  69. Loubens I, Debarbieux L, Bohin A, Lacroix JM, Bohin JP (1993) Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Mol Microbiol 10:329–340PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lynch JM, Whipps JM (1991) In: Keister DL, Cregan B (eds) Substrate flow in the rhizosphere, in the rhizosphere and plant growth. Kluwer Academic, Dordrecht, pp 15–24CrossRefGoogle Scholar
  71. Madigan TM, Martinko MJ, Stahl AD, Clark PD (2012) Brock biology of microorganisms, 13th edn. Pearson, LondonGoogle Scholar
  72. Mandahar CL (2006) Multiplication of RNA plant viruses. Springer, DordrechtGoogle Scholar
  73. Mano H, Tanaka F, Nakamura C, Kaga H, Morisaki H (2007) Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy soil. Microbes Environ 22:175–185CrossRefGoogle Scholar
  74. Marschner H (1995) Mineral nutrition of higher plants. Ann Bot 78:527–528Google Scholar
  75. Mendes R, Kruijt M, Bruijn I, Dekkers E, Voort M, Schneider JHM, Piceno YM, Desantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100PubMedCrossRefPubMedCentralGoogle Scholar
  76. Minsavage GV, Mudgett MB, Stall RE, Jones JB (2004) Importance of opgHXcv of Xanthomonas campestris pv. vesicatoria in host parasite interactions. Mol Plant-Microbe Interact 17:152–161PubMedCrossRefPubMedCentralGoogle Scholar
  77. Mirzaei S, Goltapeh EM, Shams-Bakhsh M, Safaie N (2008) Identification of Botrytis spp. on plants grown in Iran. J Phytopathol 156:21–28Google Scholar
  78. Mitchell R, Gu J (2010) Environmental microbiology, 2nd edn. Wiley-Blackwell, Hoboken, NJGoogle Scholar
  79. Montesines E (2000) Pathogenic plant-microbial interactions. What we know and how we benefit? (editorial). Intl Microbiol 3:69–70Google Scholar
  80. Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loopmediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289:150–154PubMedCrossRefPubMedCentralGoogle Scholar
  81. Nakahara KS, Masuta C (2014) Interaction between viral RNA silencing suppressors and host factors in plant immunity. Curr Opin Plant Biol 20:88–95PubMedCrossRefPubMedCentralGoogle Scholar
  82. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2007) Microbial diversity and microbial activity in the rhizosphere. Ciencia del Suelo (Argentina) 25:89–97Google Scholar
  83. Nassuth A, Pollari E, Helmeczy K, Stewart S, Kofalvi SA (2000) Improved RNA extraction and one tube RT-PCR assay for simultaneous detection of control plant RNA plus several viruses in plant extracts. J Virol Methods 90:37–49PubMedCrossRefPubMedCentralGoogle Scholar
  84. Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification. Pennsylvania State University Press, University Park, PAGoogle Scholar
  85. Nezhad AS (2014) Microfluidic platforms for plant cells studies. Lab Chip 14:3262–3274CrossRefGoogle Scholar
  86. Ogle HJ, Brown JF (eds) (1997) Plant pathogens and plant diseases. Rockvale Publications, Berringer, NSWGoogle Scholar
  87. Oliver RP, Farman ML, Jones JDG, Harmon-Kosack KE (1993) Use of fungal transformants expressing ß-glucuronidase activity to detect infection and measure hyphal biomass in infected plant tissues. Mol Plant-Microbe Interact 6:521–525CrossRefGoogle Scholar
  88. Olmos A, Bertolini E, Gil M, Cambra M (2005) Real-time assay for quantitative detection of non persistently transmitted Plumpox virus RNA targets in a single aphids. J Virol Methods 128:151–155PubMedCrossRefPubMedCentralGoogle Scholar
  89. Osiowy C (1998) Direct detection of respiratory syncytial virus, parainfluenza virus, and adenovirus in clinical respiratory specimens by a multiplex reverse transcription-PCR assay. J Clin Microbiol 36:3149–3154PubMedPubMedCentralGoogle Scholar
  90. Pallisgaard N, Hokland P, Riishoj DC, Pedersen B, Jørgensen P (1998) Multiplex reverse transcription polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood 92:574–588PubMedPubMedCentralGoogle Scholar
  91. Pan SQ, Ye XS, Kuc J (1991) A technique for detection of chitinase ß-1,3-glucanase and protein patterns after a single separation using polyacrylamide gel electrophoresis or isoelectrofocusing. Phytopathology 81:970–974CrossRefGoogle Scholar
  92. Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989PubMedCrossRefPubMedCentralGoogle Scholar
  93. Parashar A, Pandey S (2011) Plant-in-chip: microfluidic system for studying root growth and pathogenic interactions in Arabidopsis. Appl Phys Lett 98:263703CrossRefGoogle Scholar
  94. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedPubMedCentralCrossRefGoogle Scholar
  95. Plantiño-Álvarez B, Rodríguez-Cámara MC, Rodríguez Fernandez T, González-Jaen MT, Vázquez Estévez C (1999) Immunodetection of an exo-polygalacturonase in tomato plants infected with Fusarium oxysporum f.sp. radicis-lycopersici. Bol Sandad Vegetal Plagas 25:529–536Google Scholar
  96. Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Cham, pp 1–7Google Scholar
  97. Pruss G, Ge X, Shi XM, Carrington JC, Bowman Vance V (1997) Plant viral synergism: the potyviral genome encodes a broadrange pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859–868PubMedPubMedCentralCrossRefGoogle Scholar
  98. Purcell AH, Hopkins DL (1996) Fastidious xylem-limited bacterial plant pathogens. Annu Rev Phytopathol 34:131–151PubMedCrossRefPubMedCentralGoogle Scholar
  99. Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424PubMedCrossRefPubMedCentralGoogle Scholar
  100. Remus-Emsermann MNP, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA (2014) Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol 16:2329–2340PubMedCrossRefPubMedCentralGoogle Scholar
  101. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rey T, Schornack S (2013) Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts. Genome Biol 14:121PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rittenburg JH, Petersen FP, Grothaus GD, Miller SA (1988) Development of a rapid, field-usable immunoassay format, for detection and quantitation of Pythium, Rhizoctonia and Sclerotinia spp. in plant tissue. Phytopathology 78:1516Google Scholar
  104. Rodriguez EE, Ghoul H, Mundy J, Petersen M (2015) Making sense of plant autoimmunity and ‘negative regulators’. FEBS J 283(8):1385–1391PubMedCrossRefPubMedCentralGoogle Scholar
  105. Russ JC (1999) The image processing handbook, 3rd edn. CRC, Boca Raton, FL, 771 pGoogle Scholar
  106. Saito A, Ikeda S, Ezura H, Minamisawa K (2007) Microbial community analysis of the phytosphere using culture-independent methodologies. Microbes Environ 22:93–105CrossRefGoogle Scholar
  107. Savage SD, Sall MA (1981) Radioimmunosorbent assay for Botrytis cinerea. Phytopathology 71:411–415CrossRefGoogle Scholar
  108. Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 24:250–258CrossRefGoogle Scholar
  109. Shapiro OH, Kramarsky-Winter E, Gavish AR, Stocker R, Vardi A (2016) A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat Commun 7:10860PubMedPubMedCentralCrossRefGoogle Scholar
  110. Shiekh MA (2014) Plant defense and the counter defense by viruses. Global J Res Rev 1:37–44Google Scholar
  111. Simpson AJG, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LM, Araya JE et al (2000) The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa consortium of the organization for nucleotide sequencing and analysis. Nature 406:151–159PubMedCrossRefPubMedCentralGoogle Scholar
  112. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New YorkGoogle Scholar
  113. Smolka MB, Martins D, Winck FV, Santoro CE, Castellari RR, Ferrari F, Brum IJ, Galembeck E (2003) Proteome analysis of the plant pathogen Xylella fastidiosa reveals major cellular and extracellular proteins and a peculiar codon bias distribution. Proteomics 3:224–237PubMedCrossRefPubMedCentralGoogle Scholar
  114. Soosaar JLM, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3:789–798PubMedCrossRefPubMedCentralGoogle Scholar
  115. Spaink HP, Kondorosi A, Hooykaas PJJ (1998) The rhizobiaeceae. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  116. Sundaram S, Plascencia S, Banttari EE (1991) Enzyme-linked immunosorbent assay for detection of Verticillium spp. using antisera produced to V. dahliae from potato. Phytopathology 81:1485–1489CrossRefGoogle Scholar
  117. Syller J (2012) Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol Plant Pathol 13:204–216PubMedCrossRefPubMedCentralGoogle Scholar
  118. Talaro KP, Chess B (2012) Foundations in microbiology, 8th edn. McGraw-Hill, New YorkGoogle Scholar
  119. Tempel A (1959) Serological investigations in Fusarium oxysporum. Meded No. 138 Lanbouwhogeschool, Wageningen 59: 1–60Google Scholar
  120. Valli A, Lopez-Moya JJ, Garcia JA (2009) RNA silencing and its suppressors in the plant-virus interplay. Wiley, ChichesterCrossRefGoogle Scholar
  121. VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6:1191–1192PubMedPubMedCentralCrossRefGoogle Scholar
  122. Varga A, James D (2006) Use of reverse transcription loop-mediated isothermal amplification for the detection of plum pox virus. J Virol Methods 138:184–190PubMedCrossRefPubMedCentralGoogle Scholar
  123. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840PubMedCrossRefPubMedCentralGoogle Scholar
  124. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363CrossRefGoogle Scholar
  125. Watt SA, Wilke A, Patschkowski T, Niehaus K (2005) Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics 5:153–167PubMedCrossRefPubMedCentralGoogle Scholar
  126. Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755PubMedCrossRefPubMedCentralGoogle Scholar
  127. Willey MJ, Sherwood ML, Woolverton JC (2009) Prescott’s principles of microbiology, 1st edn. Mc-Graw-Hill, New YorkGoogle Scholar
  128. Williams K, Blake S, Sweeney A, Singer JT, Nicholson BL (1999) Multiplex reverse transcriptase PCR assay for simultaneous detection of three fish viruses. J Clin Microbiol 37:4139–4141PubMedPubMedCentralGoogle Scholar
  129. Wolf S, Lucas JW, Deom CM, Beachy RN (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Regina Sharmila Dass
    • 1
  • Rathijit Mallick
    • 2
  1. 1.Department of MicrobiologySchool of Life Sciences, Pondicherry UniversityPondicherryIndia
  2. 2.Pondicherry UniversityPondicherryIndia

Personalised recommendations